3,382 research outputs found

    Impact of dead zones on the response of a hadron calorimeter with projective and non-projective geometry

    Full text link
    The aim of this study is to find an optimal mechanical design of the hadronic calorimeter for SiD detector which takes into account engineering as well as physics requirements. The study focuses on the crack effects between two modules for various barrel mechanical design on calorimeter response. The impact of different size of the supporting stringers and dead areas in an active calorimeter layer along the module boundary has been studied for single pions and muons. The emphasis has been put on the comparison of the projective and non-projective barrel geometry for SiD hadronic calorimeter.Comment: 12 pages, 8 figure

    Large surface micromegas with embedded front-end electronics for a digital hadronic calorimeter

    Get PDF
    International audienceIn order to study the advantages of a digital hadronic calorimeter for particle flow algorithms, we aim to build a detector prototype with MicroMegas chambers. The bulk technology was chosen for its robustness and the possibility of industrial manufacturing process for mass production. First tests of 1 cm2 granularity MicroMegas with analog readout are very promising. Larger chambers with embedded digital front-end electronics together with detector interface readout boards are being designed. The challenge also lies in the mechanical design of a 1 m2 chamber with a total thickness of 6 mm

    MICROMEGAS Beam Test 2008 - Analysis & Results

    Get PDF
    Prototypes of MICROMEGAS chambers using bulk technology and equipped with analog readout have been tested in particle beams. Measurements of detector gain, efficiency and multiplicity are presented. Disparities of gain and efficiency are presented as well. Threshold dependencies of efficiency and multiplicity are also shown. The chambers behaviour in high energy hadronic showers is briefly addressed in the last section

    Status of the Micromegas semi-DHCAL

    Full text link
    The activities towards the fabrication and test of a 1 m3 semi-digital hadronic calorime- ter are reviewed. The prototype sampling planes would consist of 1 m2 Micromegas chambers with 1 cm2 granularity and embedded 2 bits readout suitable for PFA calorime- try at an ILC detector. The design of the 1 m2 chamber is presented first, followed by an overview of the basic performance of small prototypes. The basic units composing the 1 m2 chamber are 32 \times 48 cm2 boards with integrated electronics and a micro-mesh. Results of character- ization tests of such boards are shown. Micromegas as a proportional detector is well suited for semi-digital hadronic calorimetry. In order to quantify the gain in perfor- mance when using one or more thresholds, simulation studies are being carried out, some of which will be reported in this contribution
    corecore