4 research outputs found

    The oxidative balance and stopover departure decisions in a medium- and a long-distance migrant

    No full text
    Background: Birds have extremely elevated metabolic rates during migratory endurance flight and consequently can become physiologically exhausted. One feature of exhaustion is oxidative damage, which occurs when the antioxidant defense system is overwhelmed by the production of damaging reactive oxygen species (ROS). Migrating birds have been shown to decrease the amount of oxidative lipid damage during stopovers, relatively stationary periods in between migratory flights. It has therefore been argued that, in addition to accumulating fuel, one of the functions of stopover is to restore the oxidative balance. If this is so, we would expect that migrating birds are unlikely to resume migration from stopover when they still have high amounts of lipid damage. Methods: To test this hypothesis, we measured parameters of the oxidative balance and related these to stopover departure decisions of song thrushes (Turdus philomelos) and northern wheatears (Oenanthe oenanthe), a medium- and long-distance songbird migrant, respectively. We measured malondialdehyde (MDA) concentration, a biomarker for oxidative lipid damage, and total non-enzymatic antioxidant capacity (AOX), an overall biomarker of protection against ROS. Stopover departure decisions were determined using a fully automated telemetry system set-up on our small island study site. Results: The decision to resume migration was not related with MDA concentration in either study species, also not when this was corrected for circulating fatty acid concentrations. Similarly, AOX did not affect this decision, also not when corrected for uric-acid concentration. The time within the night when birds departed also was not affected by MDA concentration or AOX. However, confirming earlier observations, we found that in both species, fat individuals were more likely to depart than lean individuals, and fat northern wheatears departed earlier within the night than lean conspecifics. Northern wheatears additionally departed earlier in spring with more southerly winds. Conclusions: We found no support for the idea that stopovers departure decisions are influenced by parameters of the oxidative balance. We discuss possible reasons for this unexpected finding

    Year-round spatiotemporal distribution pattern of a threatened sea duck species breeding on Kolguev Island, south-eastern Barents Sea

    No full text
    Abstract Background The long-tailed duck (Clangula hyemalis) was categorized as ´Vulnerable` by the IUCN after a study revealed a rapid wintering population decline of 65% between 1992–1993 and 2007–2009 in the Baltic Sea. As knowledge about the European long-tailed duck’s life cycle and movement ecology is limited, we investigate its year-round spatiotemporal distribution patterns. Specifically, we aimed to identify the wintering grounds, timing of migration and staging of this population via light-level geolocation. Results Of the 48 female long-tailed ducks tagged on Kolguev Island (western Russian Arctic), 19 were recaptured to obtain data. After breeding and moulting at freshwater lakes, ducks went out to sea around Kolguev Island and to marine waters ranging from the White Sea to Novaya Zemlya Archipelago for 33 ± 10 days. After a rapid autumn migration, 18 of 19 birds spent their winter in the Baltic Sea and one bird in the White Sea, where they stayed for 212 ± 3 days. There, they used areas known to host long-tailed ducks, but areas differed among individuals. After a rapid spring migration in mid-May, the birds spent 23 ± 3 days at sea in coastal areas between the White Sea and Kolguev Island, before returning to their freshwater breeding habitats in June. Conclusions The Baltic Sea represents the most important wintering area for female long-tailed ducks from Kolguev Island. Important spring and autumn staging areas include the Barents Sea and the White Sea. Climate change will render these habitats more exposed to human impacts in the form of fisheries, marine traffic and oil exploitation in near future. Threats that now operate in the wintering areas may thus spread to the higher latitude staging areas and further increase the pressure on long-tailed ducks

    Broadband 75–85 MHz radiofrequency fields disrupt magnetic compass orientation in night-migratory songbirds consistent with a flavin-based radical pair magnetoreceptor

    No full text
    The light-dependent magnetic compass sense of night-migratory songbirds can be disrupted by weak radiofrequency fields. This finding supports a quantum mechanical, radical-pair-based mechanism of magnetoreception as observed for isolated cryptochrome 4, a protein found in birds’ retinas. The exact identity of the magnetically sensitive radicals in cryptochrome is uncertain in vivo, but their formation seems to require a bound flavin adenine dinucleotide chromophore and a chain of four tryptophan residues within the protein. Resulting from the hyperfine interactions of nuclear spins with the unpaired electrons, the sensitivity of the radicals to radiofrequency magnetic fields depends strongly on the number of magnetic nuclei (hydrogen and nitrogen atoms) they contain. Quantum-chemical calculations suggested that electromagnetic noise in the frequency range 75–85 MHz could give information about the identity of the radicals involved. Here, we show that broadband 75–85 MHz radiofrequency fields prevent a night-migratory songbird from using its magnetic compass in behavioural experiments. These results indicate that at least one of the components of the radical pair involved in the sensory process of avian magnetoreception must contain a substantial number of strong hyperfine interactions as would be the case if a flavin–tryptophan radical pair were the magnetic sensor
    corecore