8 research outputs found

    A mobile cloud computing framework integrating multilevel encoding for performance monitoring in telerehabilitation

    Full text link
    Recent years have witnessed a surge in telerehabilitation and remote healthcare systems blessed by the emerging low-cost wearable devices to monitor biological and biokinematic aspects of human beings. Although such telerehabilitation systems utilise cloud computing features and provide automatic biofeedback and performance evaluation, there are demands for overall optimisation to enable these systems to operate with low battery consumption and low computational power and even with weak or no network connections. This paper proposes a novel multilevel data encoding scheme satisfying these requirements in mobile cloud computing applications, particularly in the field of telerehabilitation. We introduce architecture for telerehabilitation platform utilising the proposed encoding scheme integrated with various types of sensors. The platform is usable not only for patients to experience telerehabilitation services but also for therapists to acquire essential support from analysis oriented decision support system (AODSS) for more thorough analysis and making further decisions on treatment

    An adaptive complementary filter for inertial sensor based data fusion to track upper body motion

    Full text link
      Remote human activity monitoring is critical and essential in physiotherapy with respect to the skyrocketing healthcare expenditure and the fast aging population. One of frequently used method to monitor human activity is wearing inertial sensors since it is low-cost and accurate. However, the measurements of those sensors are able only to estimate the orientation and rotation angles with respect to actual movement angles, because of differences in the body’s co-ordination system and the sensor’s co-ordination system. There were numerous studies being conducted to improve the accuracy of estimation, though there is potential for further discussions on improving accuracy by replacing heavy algorithms to less complexity. This research is an attempt to propose an adaptive complementary filter for identifying human upper arm movements. Further, this article discusses a feasibility of upper arm rehabilitation using the proposed adaptive complementary filter and inertial measurement sensors. The proposed algorithm is tested with four healthy subjects wearing an inertial sensor against gold standard, which is the VICON system. It demonstrated root mean squared error of 8.77â—¦ for upper body limb orientation estimation when compared to gold standard VICON optical motion capture system

    An adaptive orientation misalignment calibration method for shoulder movements using inertial sensors : a feasibility study

    Full text link
    Qualitative assessment of the progress in physical rehabilitation largely depends on accurate measurement of the range of movements and other kinematic parameters. In clinical practice, wearable inertial sensors have proved to be a potential candidate for such measurements, over the traditional marker based optical systems due to cost and space considerations. The accuracy of wearable sensors have a significant dependence on the initial orientation calibration and the assumption that the sensor will not slip or move with respect to the attached limb. This article introduces a novel calibration algorithm to correct initial orientation misalignment, as well as to track and correct subsequent alignment errors progressively throughout the experiment. The theoretical assertions are validated through controlled experiments with simulated accelerometer and gyroscope measurements

    A machine-driven process for human limb length estimation using inertial sensors

    Full text link
    The computer based human motion tracking systems are widely used in medicine and sports. The accurate determination of limb lengths is crucial for not only constructing the limb motion trajectories which are used for evaluation process of human kinematics, but also individually recognising human beings. Yet, as the common practice, the limb lengths are measured manually which is inconvenient, time-consuming and requires professional knowledge. In this paper, the estimation process of limb lengths is automated with a novel algorithm calculating curvature using the measurements from inertial sensors. The proposed algorithm was validated with computer simulations and experiments conducted with four healthy subjects. The experiment results show the significantly low root mean squared error percentages such as upper arm - 5.16%, upper limbs - 5.09%, upper leg - 2.56% and lower extremities - 6.64% compared to measured lengths.<br /

    Ambulatory energy expenditure evaluation for treadmill exercises

    Full text link
    This paper introduces an ambulatory energy expenditure technique using a single inertial sensor, and compares the performance with an industry standard metabolic measurement system. Wearable energy expenditure estimation systems are key instruments in athlete evaluation. The cost and size of traditional oxygen intake measurement systems (VO2 systems) limits usage of such technology in everyday athlete training and evaluation events. This project describes a method of estimating energy expenditure during treadmill exercise, from limb angular velocity and metabolic measurements. The feasibility of using such a system was evaluated using experimental results

    Wearable Physical Activity Tracking Systems for Older Adults—A Systematic Review

    No full text
    corecore