7 research outputs found

    Determining crystal structures through crowdsourcing and coursework

    Get PDF
    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality

    Transcriptome sequencing and de novo assembly in arecanut, Areca catechu L elucidates the secondary metabolite pathway genes

    No full text
    Areca catechu L. belongs to the Arecaceae family which comprises many economically important palms. The palm is a source of alkaloids and carotenoids. The lack of ample genetic information in public databases has been a constraint for the genetic improvement of arecanut. To gain molecular insight into the palm, high throughput RNA sequencing and de novo assembly of arecanut leaf transcriptome was undertaken in the present study. A total 56,321,907 paired end reads of 101 bp length consisting of 11.343 Gb nucleotides were generated. De novo assembly resulted in 48,783 good quality transcripts, of which 67% of transcripts could be annotated against NCBI non – redundant database. The Gene Ontology (GO) analysis with UniProt database identified 9222 biological process, 11268 molecular function and 7574 cellular components GO terms. Large scale expression profiling through Fragments per Kilobase per Million mapped reads (FPKM) showed major genes involved in different metabolic pathways of the plant. Metabolic pathway analysis of the assembled transcripts identified 124 plant related pathways. The transcripts related to carotenoid and alkaloid biosynthetic pathways had more number of reads and FPKM values suggesting higher expression of these genes. The arecanut transcript sequences generated in the study showed high similarity with coconut, oil palm and date palm sequences retrieved from public domains. We also identified 6853 genic SSR regions in the arecanut. The possible primers were designed for SSR detection and this would simplify the future efforts in genetic characterization of arecanut

    Not Available

    No full text
    Not AvailableNot AvailableNot Availabl

    A human liver cell-based system modeling a clinical prognostic liver signature for therapeutic discovery

    No full text
    International audienceAbstract Chronic liver disease and hepatocellular carcinoma (HCC) are life-threatening diseases with limited treatment options. The lack of clinically relevant/tractable experimental models hampers therapeutic discovery. Here, we develop a simple and robust human liver cell-based system modeling a clinical prognostic liver signature (PLS) predicting long-term liver disease progression toward HCC. Using the PLS as a readout, followed by validation in nonalcoholic steatohepatitis/fibrosis/HCC animal models and patient-derived liver spheroids, we identify nizatidine, a histamine receptor H2 (HRH2) blocker, for treatment of advanced liver disease and HCC chemoprevention. Moreover, perturbation studies combined with single cell RNA-Seq analyses of patient liver tissues uncover hepatocytes and HRH2 + , CLEC5A high , MARCO low liver macrophages as potential nizatidine targets. The PLS model combined with single cell RNA-Seq of patient tissues enables discovery of urgently needed targets and therapeutics for treatment of advanced liver disease and cancer prevention
    corecore