45 research outputs found

    Universal description of three two-component fermions

    Full text link
    A quantum mechanical three-body problem for two identical fermions of mass mm and a distinct particle of mass m1m_1 in the universal limit of zero-range two-body interaction is studied. For the unambiguous formulation of the problem in the interval μr<m/m1μc\mu_r < m/m_1 \le \mu_c (μr8.619\mu_r \approx 8.619 and μc13.607\mu_c \approx 13.607) an additional parameter bb determining the wave function near the triple-collision point is introduced; thus, a one-parameter family of self-adjoint Hamiltonians is defined. The dependence of the bound-state energies on m/m1m/m_1 and bb in the sector of angular momentum and parity LP=1L^P = 1^- is calculated and analysed with the aid of a simple model

    Universal description of the rotational-vibrational spectrum of three particles with zero-range interactions

    Full text link
    A comprehensive universal description of the rotational-vibrational spectrum for two identical particles of mass mm and the third particle of the mass m1m_1 in the zero-range limit of the interaction between different particles is given for arbitrary values of the mass ratio m/m1m/m_1 and the total angular momentum LL. If the two-body scattering length is positive, a number of vibrational states is finite for Lc(m/m1)LLb(m/m1)L_c(m/m_1) \le L \le L_b(m/m_1), zero for L>Lb(m/m1)L>L_b(m/m_1), and infinite for L<Lc(m/m1)L<L_c(m/m_1). If the two-body scattering length is negative, a number of states is either zero for LLc(m/m1)L \ge L_c(m/m_1) or infinite for L<Lc(m/m1)L<L_c(m/m_1). For a finite number of vibrational states, all the binding energies are described by the universal function ϵLN(m/m1)=E(ξ,η)\epsilon_{LN}(m/m_1) = {\cal E}(\xi, \eta), where ξ=N1/2L(L+1)\xi=\displaystyle\frac{N-1/2}{\sqrt{L(L + 1)}}, η=mm1L(L+1)\eta=\displaystyle\sqrt{\frac{m}{m_1 L (L + 1)}},and NN is the vibrational quantum number. This scaling dependence is in agreement with the numerical calculations for L>2L > 2 and only slightly deviates from those for L=1,2L = 1, 2. The universal description implies that the critical values Lc(m/m1)L_c(m/m_1) and Lb(m/m1)L_b(m/m_1) increase as 0.401m/m10.401 \sqrt{m/m_1} and 0.563m/m10.563 \sqrt{m/m_1}, respectively, while a number of vibrational states for LLc(m/m1)L \ge L_c(m/m_1) is within the range NNmax1.1L(L+1)+1/2N \le N_{max} \approx 1.1 \sqrt{L(L+1)}+1/2

    Low-energy three-body dynamics in binary quantum gases

    Full text link
    The universal three-body dynamics in ultra-cold binary Fermi and Fermi-Bose mixtures is studied. Two identical fermions of the mass mm and a particle of the mass m1m_1 with the zero-range two-body interaction in the states of the total angular momentum L=1 are considered. Using the boundary condition model for the s-wave interaction of different particles, both eigenvalue and scattering problems are treated by solving hyper-radial equations, whose terms are derived analytically. The dependencies of the three-body binding energies on the mass ratio m/m1m/m_1 for the positive two-body scattering length are calculated; it is shown that the ground and excited states arise at m/m1λ18.17260m/m_1 \ge \lambda_1 \approx 8.17260 and m/m1λ212.91743m/m_1 \ge \lambda_2 \approx 12.91743, respectively. For m/m_1 \alt \lambda_1 and m/m_1 \alt \lambda_2, the relevant bound states turn to narrow resonances, whose positions and widths are calculated. The 2 + 1 elastic scattering and the three-body recombination near the three-body threshold are studied and it is shown that a two-hump structure in the mass-ratio dependencies of the cross sections is connected with arising of the bound states.Comment: 16 page

    Universal low-energy properties of three two-dimensional particles

    Get PDF
    Universal low-energy properties are studied for three identical bosons confined in two dimensions. The short-range pair-wise interaction in the low-energy limit is described by means of the boundary condition model. The wave function is expanded in a set of eigenfunctions on the hypersphere and the system of hyper-radial equations is used to obtain analytical and numerical results. Within the framework of this method, exact analytical expressions are derived for the eigenpotentials and the coupling terms of hyper-radial equations. The derivation of the coupling terms is generally applicable to a variety of three-body problems provided the interaction is described by the boundary condition model. The asymptotic form of the total wave function at a small and a large hyper-radius ρ\rho is studied and the universal logarithmic dependence ln3ρ\sim \ln^3 \rho in the vicinity of the triple-collision point is derived. Precise three-body binding energies and the 2+12 + 1 scattering length are calculated.Comment: 30 pages with 13 figure
    corecore