2 research outputs found

    Laser-induced magnetization precession in the magnetite Fe<sub>3</sub>O<sub>4</sub> in the vicinity of a spin-reorientation transition

    No full text
    Using time-resolved magneto-optical pump-probe technique we demonstrate excitation of magnetization precession in a single crystalline bulk magnetite Fe3O4 below and in the vicinity of the Verwey and spin-reorientation (SR) phase transitions. Pronounced temperature dependence of the precession amplitude is observed suggesting that the excitation occurs via laser-driven spin-reorientation transition. Similarity observed between the characteristic features of the laser-induced ultrafast SR and Verwey transitions suggests that they both rely on the same microscopic processes.publishe

    CAPA:The Spirit of Beaver Against Physical Attacks

    Get PDF
    In this paper we introduce two things: On one hand we introduce the Tile-Probe-and-Fault model, a model generalising the wire-probe model of Ishai et al. extending it to cover both more realistic side-channel leakage scenarios on a chip and also to cover fault and combined attacks. Secondly we introduce CAPA: a combined Countermeasure Against Physical Attacks. Our countermeasure is motivated by our model, and aims to provide security against higher-order SCA, multiple-shot FA and combined attacks. The tile-probe-and-fault model leads one to naturally look (by analogy) at actively secure multi-party computation protocols. Indeed, CAPA draws much inspiration from the MPC protocol SPDZ. So as to demonstrate that the model, and the CAPA countermeasure, are not just theoretical constructions, but could also serve to build practical countermeasures, we present initial experiments of proof-of-concept designs using the CAPA methodology. Namely, a hardware implementation of the KATAN and AES block ciphers, as well as a software bitsliced AES S-box implementation. We demonstrate experimentally that the design can resist second-order DPA attacks, even when the attacker is presented with many hundreds of thousands of traces. In addition our proof-of-concept can also detect faults within our model with high probability in accordance to the methodology
    corecore