1,226 research outputs found
3D-xy critical properties of YBa2Cu4O8 and magnetic field induced 3D to 1D crossover
We present reversible magnetization data of a YBa2Cu4O8 single crystal and
analyze the evidence for 3D-xy critical behavior and a magnetic field induced
3D to 1D crossover. Remarkable consistency with these phenomena is observed in
agreement with a magnetic field induced finite size effect, whereupon the
correlation length transverse to the applied magnetic field cannot grow beyond
the limiting magnetic length scale L_H. By applying the appropriate scaling
form we obtain the zero-field critical temperature, the 3D to 1D crossover, the
vortex melting line and the universal ratios of the related scaling variables.
Accordingly there is no continuous phase transition in the (H,T)-plane along
the H_c2-lines as predicted by the mean-field treatment.Comment: 8 pages, 4 figure
Analysis of an interior penalty discontinuous Galerkin scheme for two phase flow in porous media with dynamic capillarity effects
We present an interior penalty discontinuous Galerkin scheme for two-phase flow with dynamic capillary pressure effects. The mass-conservation laws are approximated directly, without the introduction of a global pressure. We prove existence and convergence of the scheme and obtain error-estimates for sufficiently smooth data
Anharmonicity and self-energy effects of the E2g phonon in MgB2
We present a Raman scattering study of the E2g phonon anharmonicity and of
superconductivity induced self-energy effects in MgB2 single crystals. We show
that anharmonic two phonon decay is mainly responsible for the unusually large
linewidth of the E2g mode. We observe ~ 2.5 % hardening of the E2g phonon
frequency upon cooling into the superconducting state and estimate the
electron-phonon coupling strength associated with this renormalization.Comment: 4 pages, 3 figures, accepted to PR
L4Fe2As2Te1-xO4-yFy (L = Pr, Sm, Gd): a layered oxypnictide superconductor with Tc up to 45 K
The synthesis, structural and physical properties of iron lanthanide
oxypnictide superconductors, L4Fe2As2Te1-xO4 (L = Pr, Sm, Gd), with transition
temperature at ~ 25 K are reported. Single crystals have been grown at high
pressure using cubic anvil technique. The crystal structure consists of layers
of L2O2 tetrahedra separated by alternating layers of chains of Te and of
Fe2As2 tetrahedra: -L2O2-Te-L2O2-Fe2As2-L2O2-Te-L2O2- (space group: I4/mmm, a ~
4.0, c ~ 29.6 {\AA}). Substitution of oxygen by fluorine increases the critical
temperature, e.g. in Gd4Fe2As2Te1-xOyF4-y up to 45 K. Magnetic torque
measurements reveal an anisotropy of the penetration depths of ~31.Comment: 8 figures, 4 table
Critical current anisotropy in Nd-1111 single crystals and the infuence of neutron irradiation
We report on angle-resolved magnetization measurements on
NdFeAsOF (Nd-1111) single crystals. The field dependence of
the critical current density, , is non-monotonous in these crystals at all
orientations and temperatures due to the fishtail effect, which strongly
influences the angular dependence of . The currents decrease as the field
is tilted from the crystallographic c-axis at low fields, but increase at high
fields. A peak occurs in the angular dependence of at intermediate
fields. The critical currents are significantly enhanced after irradiation with
fast neutrons and the fishtail disappears. The different current anisotropies
at low and high fields, however, persist. We discuss the data in the framework
of the anisotropic scaling approach and propose a transition from dominant
pinning by large defects of low density at low fields to pinning by small
defects of high density at high fields in the pristine crystal. Strong pinning
dominates at all fields after the irradiation, and the angular dependence of
can be described by anisotropic scaling only after an appropriate
extension to this pinning regime
- …