189 research outputs found

    Hermitian K-theory of the integers

    Full text link
    The 2-primary torsion of the higher algebraic K-theory of the integers has been computed by Rognes and Weibel. In this paper we prove analogous results for the Hermitian K-theory of the integers with 2 inverted (denoted by Z'). We also prove in this case the analog of the Lichtenbaum conjecture for the hermitian K-theory of Z' : the homotopy fixed point set of a suitable Z/2 action on the classifying space of the algebraic K-theory of Z' is the hermitian K-theory of Z' after 2-adic completion.Comment: 36 pages ; see also http://www.math.jussieu.fr/~karoubi/ and http://www.math.nus.edu.sg/~matberic

    Generalized differential spaces with dN=0d^N=0 and the qq-differential calculus

    Full text link
    We present some results concerning the generalized homologies associated with nilpotent endomorphisms dd such that dN=0d^N=0 for some integer N2N\geq 2. We then introduce the notion of graded qq-differential algebra and describe some examples. In particular we construct the qq-analog of the simplicial differential on forms, the qq-analog of the Hochschild differential and the qq-analog of the universal differential envelope of an associative unital algebra.Comment: 8 pages, Latex2e, uses pb-diagram, available at http://qcd.th.u-psud.fr, to be published in the Proceedings of the 5th Colloquium ``Quantum Groups and Integrable Systems", Prague, June 199

    The homotopy fixed point theorem and the Quillen-Lichtenbaum conjecture in hermitian K-theory

    Get PDF
    Let X be a noetherian scheme of finite Krull dimension, having 2 invertible in its ring of regular functions, an ample family of line bundles, and a global bound on the virtual mod-2 cohomological dimensions of its residue fields. We prove that the comparison map from the hermitian K-theory of X to the homotopy fixed points of K-theory under the natural Z/2-action is a 2-adic equivalence in general, and an integral equivalence when X has no formally real residue field. We also show that the comparison map between the higher Grothendieck-Witt (hermitian K-) theory of X and its \'etale version is an isomorphism on homotopy groups in the same range as for the Quillen-Lichtenbaum conjecture in K-theory. Applications compute higher Grothendieck-Witt groups of complex algebraic varieties and rings of 2-integers in number fields, and hence values of Dedekind zeta-functions.Comment: 17 pages, to appear in Adv. Mat

    An explicit KO-degree map and applications

    Full text link
    The goal of this note is to study the analog in unstable A1{{\mathbb A}^1}-homotopy theory of the unit map from the motivic sphere spectrum to the Hermitian K-theory spectrum, i.e., the degree map in Hermitian K-theory. We show that "Suslin matrices", which are explicit maps from odd dimensional split smooth affine quadrics to geometric models of the spaces appearing in Bott periodicity in Hermitian K-theory, stabilize in a suitable sense to the unit map. As applications, we deduce that KiMW(F)=GWii(F)K^{MW}_i(F) = GW^i_i(F) for i3i \leq 3, which can be thought of as an extension of Matsumoto's celebrated theorem describing K2K_2 of a field. These results provide the first step in a program aimed at computing the sheaf πnA1(An0)\pi_{n}^{{\mathbb A}^1}({\mathbb A}^n \setminus 0) for n4n \geq 4.Comment: 36 Pages, Final version, to appear Journal of Topolog

    Hermitian K-theory and 2-regularity for totally real number fields

    Full text link
    We completely determine the 2-primary torsion subgroups of the hermitian K-groups of rings of 2-integers in totally real 2-regular number fields. The result is almost periodic with period 8. We also identify the homotopy fibers of the forgetful and hyperbolic maps relating hermitian and algebraic K-theory. The result is then exactly periodic of period 8. In both the orthogonal and symplectic cases, we prove the 2-primary hermitian Quillen-Lichtenbaum conjecture.Comment: To appear in Mathematische Annale

    Periodicity of hermitian K-groups

    Full text link
    Bott periodicity for the unitary, orthogonal and symplectic groups is fundamental to topological K-theory. Analogous to unitary topological K-theory, for algebraic K-groups with finite coefficients similar periodicity results are consequences of the Milnor and Bloch-Kato conjectures, affirmed by Voevodsky, Rost and others. More generally, we prove that periodicity of the algebraic K-groups for any ring implies periodicity for its hermitian K-groups, analogous to orthogonal and symplectic topological K-theory. The proofs use in an essential way higher KSC theories extending those of Anderson and Green. They also provide an upper bound for the higher hermitian K-groups in terms of the higher algebraic K-groups. We also relate periodicity to etale hermitian K-groups by proving ahermitian version of Thomason's etale descent theorem. The results are illustrated in detail for local fields, rings of integers in number fields, smooth complex algebraic varieties, rings of continuous functions on compact spaces, and group rings

    Localisation and colocalisation of KK-theory at sets of primes

    Full text link
    Given a set of prime numbers S, we localise equivariant bivariant Kasparov theory at S and compare this localisation with Kasparov theory by an exact sequence. More precisely, we define the localisation at S to be KK^G(A,B) tensored with the ring of S-integers Z[S^-1]. We study the properties of the resulting variants of Kasparov theory.Comment: 16 page

    Integral constraints on the monodromy group of the hyperkahler resolution of a symmetric product of a K3 surface

    Full text link
    Let M be a 2n-dimensional Kahler manifold deformation equivalent to the Hilbert scheme of length n subschemes of a K3 surface S. Let Mon be the group of automorphisms of the cohomology ring of M, which are induced by monodromy operators. The second integral cohomology of M is endowed with the Beauville-Bogomolov bilinear form. We prove that the restriction homomorphism from Mon to the isometry group O[H^2(M)] is injective, for infinitely many n, and its kernel has order at most 2, in the remaining cases. For all n, the image of Mon in O[H^2(M)] is the subgroup generated by reflections with respect to +2 and -2 classes. As a consequence, we get counter examples to a version of the weight 2 Torelli question, when n-1 is not a prime power.Comment: Version 3: Latex, 54 pages. Expository change

    On the Obstructions to non-Cliffordian Pin Structures

    Full text link
    We derive the topological obstructions to the existence of non-Cliffordian pin structures on four-dimensional spacetimes. We apply these obstructions to the study of non-Cliffordian pin-Lorentz cobordism. We note that our method of derivation applies equally well in any dimension and in any signature, and we present a general format for calculating obstructions in these situations. Finally, we interpret the breakdown of pin structure and discuss the relevance of this to aspects of physics.Comment: 31 pages, latex, published in Comm. Math. Phys. 164, No. 1, pages 65-87 (1994
    corecore