7 research outputs found

    Laser-Assisted Selective Fabrication of Copper Traces on Polymers by Electroplating

    No full text
    The selective deposition of metals on dielectric materials is widely used in the electronic industry, making electro-conductive connections between circuit elements. We report a new low-cost laser-assisted method for the selective deposition of copper tracks on polymer surfaces by electroplating. The technique uses a laser for the selective modification of the polymer surface. The electrical conductivity of some polymers could be increased due to laser irradiation. Polyimide samples were treated using nanosecond and picosecond lasers working at a 1064 nm wavelength. An electro-conductive graphene-like layer was formed on the polymer surface after the laser treatment with selected parameters, and the copper layer thickness of 5–20 µm was deposited on the modified surface by electroplating. The selective laser-assisted electroplating technology allows the fabrication of copper tracks on complex shape dielectric materials. The technology could be used in the manufacturing of molded interconnect devices (MID)

    Laser-Induced Selective Electroless Plating on PC/ABS Polymer: Minimisation of Thermal Effects for Supreme Processing Speed

    No full text
    The selective surface activation induced by laser (SSAIL) for electroless copper deposition on Polycarbonate/Acrylonitrile Butadiene Styrene (PC/ABS) blend is one of the promising techniques of electric circuit formation on free-shape dielectric surfaces, which broadens capabilities of 3D microscopic integrated devices (3D-MIDs). The process consists of laser excitation, chemical activation of laser-excited areas by dipping in a liquid and electroless copper deposition of the laser-treated areas. The limiting factor in increasing throughput of the technology is a laser activation step. Laser writing is performed by modern galvanometric scanners which reach the scanning speed of several meters per second. However, adverse thermal effects on PC/ABS polymer surface abridge the high-speed laser writing. In this work, an investigation was conducted on how these thermal effects limit surface activation for selective metal deposition from the view of physics and chemistry. An advanced laser beam scanning technique of interlacing with precise accuracy and the pulse-on-demand technique was applied to overcome mentioned problems for fast laser writing. Initially, the modelling of transient heat conduction was performed. The results revealed a significant reduction in heat accumulation. Applied methods of laser writing allowed the overall processing rate to increase by up to 2.4 times. Surface morphology was investigated by a scanning electron microscope. Energy-dispersive X-ray spectroscopy was used to investigate the modification of atomic concentration on the surface after laser treatment. Experiments did not show a correlation between surface morphology and electroless plating on laser-treated areas. However, significant variation in the composition of the material was revealed depending on the surface activity for electroless plating

    A Sensor for Electrochemical pH Monitoring Based on Laser-Induced Graphene Modified with Polyfolate

    No full text
    A laser-induced graphene (LIG) modified with chitosan (Chit) and conducting polymer polyfolate (PFA) was used as a base to develop a flat and flexible pH sensor. LIGs were formed using two different irradiation wavelengths of 355 nm and 532 nm. Depending on the wavelengths, the obtained electrodes were named LIG355 and LIG532. Microscopic imaging revealed that the bare LIG electrode surface had rough structures after laser treatment giving hydrophilic properties, and that PFA forms fibre-like structures on Chit coated LIG. Electrochemical investigation with the redox probe demonstrated that diffusion is a limiting process at the bare and modified LIG electrodes. A capacitive behaviour was observed from electrochemical impedance spectra at bare electrodes, showing a rather rough interface at LIG355 but a microporous one at LIG532. The developed flat and flexible electrode was sensitive to pH in the region from 6.0 to 9.0. In the studied pH range, the sensitivity was 27.86 ± 0.81 for PFA/Chit/LIG355 and 30.32 ± 0.50 mV/pH for PFA/Chit/LIG532 with moderate stability for a period of more than two months

    Enhancing Effect of Chloride Ions on the Autocatalytic Process of Ag(I) Reduction by Co(II) Complexes

    No full text
    In this work, the possibilities of increasing the rate of electroless silver plating without a rise in the concentration of reactants or elevation of temperature were studied. The effect of halide additive, namely chloride ions, on the rate of electroless silver deposition was investigated, using conventional chemical kinetics and electrochemical techniques. It was found that the deposition rate of electroless silver increased 2–3 times in the presence of 10–20 mM of chlorides, preserving sufficient stability of the solution

    Development of Wireless Sensor Network for Environment Monitoring and Its Implementation Using SSAIL Technology

    No full text
    The Internet of Things (IoT) technology and its applications are turning real-world things into smart objects, integrating everything under a common infrastructure to manage performance through a software application and offering upgrades with integrated web servers in a timely manner. Quality of life, the green economy, and pollution management in society require comprehensive environmental monitoring systems with easy-to-use features and maintenance. This research suggests implementing a wireless sensor network with embedded sensor nodes manufactured using the Selective Surface Activation Induced by Laser technology. Such technology allows the integration of electrical circuits with free-form plastic sensor housing. In this work, a low-cost asynchronous web server for monitoring temperature and humidity sensors connected to the ESP32 Wi-Fi module has been developed. Data from sensor nodes across the facility are collected and displayed in real-time charts on a web server. Multiple web clients on the same network can access the sensor data. The energy to the sensor nodes could be powered by harvesting energy from surrounding sources of electromagnetic radiation. This automated and self-powered system monitors environmental and climatic factors, helps with timely action, and benefits sensor design by allowing antenna and rf-circuit formation on various plastics, even on the body of the device itself. It also provides greater flexibility in hardware modification and rapid large-scale deployment

    Effects of different manufacturing techniques on the performance of planar antennas

    No full text
    Abstract This study investigates antenna performance based on its manufacturing process. Two types of planar antennas are manufactured on FR-4 dielectric using three different techniques: traditional lithography, laser ablation, and the novel SSAIL (selective surface activation by laser) technique. Various characteristics, such as reflection coefficient, gain, half-power beamwidth, and surface conductivity, are measured to compare the results. These findings offer invaluable insights for choosing the most suitable antenna manufacturing technique, particularly since the SSAIL technique has not been previously compared to alternative methods in the context of antenna production. In both types of antennas, the highest gain is achieved using laser ablation, with the slot-loaded patch antenna reaching 8.5 dBi and the Yagi-Uda antenna reaching 9.76 dBi. Antennas manufactured using SSAIL technology are notable for their excellent resolution and usefulness in constructing structures on non-metallized dielectrics
    corecore