44 research outputs found
Denervation Causes Fiber Atrophy and Myosin Heavy Chain Co-Expression in Senescent Skeletal Muscle
Although denervation has long been implicated in aging muscle, the degree to which it is causes the fiber atrophy seen in aging muscle is unknown. To address this question, we quantified motoneuron soma counts in the lumbar spinal cord using choline acetyl transferase immunhistochemistry and quantified the size of denervated versus innervated muscle fibers in the gastrocnemius muscle using the in situ expression of the denervation-specific sodium channel, Nav1.5, in young adult (YA) and senescent (SEN) rats. To gain insights into the mechanisms driving myofiber atrophy, we also examined the myofiber expression of the two primary ubiquitin ligases necessary for muscle atrophy (MAFbx, MuRF1). MN soma number in lumbar spinal cord declined 27% between YA (638±34 MNs×mm−1) and SEN (469±13 MNs×mm−1). Nav1.5 positive fibers (1548±70 μm2) were 35% smaller than Nav1.5 negative fibers (2367±78 μm2; P<0.05) in SEN muscle, whereas Nav1.5 negative fibers in SEN were only 7% smaller than fibers in YA (2553±33 μm2; P<0.05) where no Nav1.5 labeling was seen, suggesting denervation is the primary cause of aging myofiber atrophy. Nav1.5 positive fibers had higher levels of MAFbx and MuRF1 (P<0.05), consistent with involvement of the proteasome proteolytic pathway in the atrophy of denervated muscle fibers in aging muscle. In summary, our study provides the first quantitative assessment of the contribution of denervation to myofiber atrophy in aging muscle, suggesting it explains the majority of the atrophy we observed. This striking result suggests a renewed focus should be placed on denervation in seeking understanding of the causes of and treatments for aging muscle atrophy
Epithelial to mesenchymal transition : a possible route to liver fibrogenesis
EThOS - Electronic Theses Online ServiceGBUnited Kingdo
Mitochondrial DNA depletion in respiratory chain-deficient Parkinson disease neurons.
OBJECTIVE: To determine the extent of respiratory chain abnormalities and investigate the contribution of mitochondrial DNA (mtDNA) to the loss of respiratory chain complexes (CI-IV) in the substantia nigra (SN) of idiopathic Parkinson disease (IPD) patients at the single-neuron level.
METHODS: Multiple-label immunofluorescence was applied to postmortem sections of 10 IPD patients and 10 controls to quantify the abundance of CI-IV subunits (NDUFB8 or NDUFA13, SDHA, UQCRC2 and COXI), and mitochondrial transcription factors (TFAM and TFB2M) relative to mitochondrial mass (Porin and GRP75) in dopaminergic neurons. To assess the involvement of mtDNA in respiratory chain deficiency in IPD, SN neurons, isolated with laser-capture microdissection, were assayed for mtDNA deletions, copy number and presence of transcription/replication-associated 7S DNA employing a triplex real-time PCR assay.
RESULTS: While mitochondrial mass was unchanged in single SN neurons from IPD patients, we observed a significant reduction in the abundances of CI and II subunits. At single-cell level, CI and II deficiencies were correlated in patients. The CI deficit concomitantly occurred with low abundances of the mtDNA transcription factors TFAM and TFB2M, which also initiate transcription-primed mtDNA replication. Consistent with this, real-time PCR analysis revealed fewer transcription/replication-associated mtDNA molecules and an overall reduction in mtDNA copy number in patients. This effect was more pronounced in single IPD neurons with severe complex I deficiency.
INTERPRETATION: Respiratory chain dysfunction in IPD neurons not only involves CI, but also extends to CII. These deficiencies are possibly a consequence of the interplay between nDNA and mtDNA-encoded factors mechanistically connected via TFAM. This article is protected by copyright. All rights reserved
Denervation Causes Fiber Atrophy and Myosin Heavy Chain Co-Expression in Senescent Skeletal Muscle
Although denervation has long been implicated in aging muscle, the degree to which it is causes the fiber atrophy seen in aging muscle is unknown. To address this question, we quantified motoneuron soma counts in the lumbar spinal cord using choline acetyl transferase immunhistochemistry and quantified the size of denervated versus innervated muscle fibers in the gastrocnemius muscle using the in situ expression of the denervation-specific sodium channel, Nav1.5, in young adult (YA) and senescent (SEN) rats. To gain insights into the mechanisms driving myofiber atrophy, we also examined the myofiber expression of the two primary ubiquitin ligases necessary for muscle atrophy (MAFbx, MuRF1). MN soma number in lumbar spinal cord declined 27% between YA (638±34 MNs×mm−1) and SEN (469±13 MNs×mm−1). Nav1.5 positive fibers (1548±70 μm2) were 35% smaller than Nav1.5 negative fibers (2367±78 μm2; P<0.05) in SEN muscle, whereas Nav1.5 negative fibers in SEN were only 7% smaller than fibers in YA (2553±33 μm2; P<0.05) where no Nav1.5 labeling was seen, suggesting denervation is the primary cause of aging myofiber atrophy. Nav1.5 positive fibers had higher levels of MAFbx and MuRF1 (P<0.05), consistent with involvement of the proteasome proteolytic pathway in the atrophy of denervated muscle fibers in aging muscle. In summary, our study provides the first quantitative assessment of the contribution of denervation to myofiber atrophy in aging muscle, suggesting it explains the majority of the atrophy we observed. This striking result suggests a renewed focus should be placed on denervation in seeking understanding of the causes of and treatments for aging muscle atrophy
A novel immunofluorescent assay to investigate oxidative phosphorylation deficiency in mitochondrial myopathy: understanding mechanisms and improving diagnosis.
Oxidative phosphorylation defects in human tissues are often challenging to quantify due to a mosaic pattern of deficiency. Biochemical assays are difficult to interpret due to the varying enzyme deficiency levels found in individual cells. Histochemical analysis allows semi-quantitative assessment of complex II and complex IV activities, but there is no validated histochemical assay to assess complex I activity which is frequently affected in mitochondrial pathology. To help improve the diagnosis of mitochondrial disease and to study the mechanisms underlying mitochondrial abnormalities in disease, we have developed a quadruple immunofluorescent technique enabling the quantification of key respiratory chain subunits of complexes I and IV, together with an indicator of mitochondrial mass and a cell membrane marker. This assay gives precise and objective quantification of protein abundance in large numbers of individual muscle fibres. By assessing muscle biopsies from subjects with a range of different mitochondrial genetic defects we have demonstrated that specific genotypes exhibit distinct biochemical signatures in muscle, providing evidence for the diagnostic use of the technique, as well as insight into the underlying molecular pathology. Stringent testing for reproducibility and sensitivity confirms the potential value of the technique for mechanistic studies of disease and in the evaluation of therapeutic approaches
Quantitative quadruple-label immunofluorescence of mitochondrial and cytoplasmic proteins in single neurons from human midbrain tissue.
BACKGROUND: Respiratory chain (RC) deficiencies are found in primary mtDNA diseases. Focal RC defects are also associated with ageing and neurodegenerative disorders, e.g. in substantia nigra (SN) neurons from Parkinson's disease patients. In mitochondrial disease and ageing, mtDNA mutational loads vary considerably between neurons necessitating single cell-based assessment of RC deficiencies. Evaluating the full extent of RC deficiency within SN neurons is challenging because their size precludes investigations in serial sections. We developed an assay to measure RC abnormalities in individual SN neurons using quadruple immunofluorescence. NEW METHOD: Using antibodies against subunits of complex I (CI) and IV, porin and tyrosine hydroxylase together with IgG subtype-specific fluorescent labelled secondary antibodies, we quantified the expression of CI and CIV compared to mitochondrial mass in dopaminergic neurons. CI:porin and CIV:porin ratios were determined relative to a standard control. RESULTS: Quantification of expression of complex subunits in midbrain sections from patients with mtDNA disease and known RC deficiencies consistently showed reduced CI:porin and/or CIV:porin ratios. COMPARISON WITH EXISTING METHOD(S): The standard histochemical method to investigate mitochondrial dysfunction, the cytochrome c oxidase/succinate dehydrogenase assay, measures CIV and CII activities. To also study CI in a patient, immunohistology in additional sections, i.e. in different neurons, is required. Our method allows correlation of the expression of CI, CIV and mitochondrial mass at a single cell level. CONCLUSION: Quantitative quadruple-label immunofluorescence is a reliable tool to measure RC deficiencies in individual neurons that will enable new insights in the molecular mechanisms underlying inherited and acquired mitochondrial dysfunction
Association of mitochondrial respiratory chain deficiency in older men with muscle mass and physical performance: findings from the Hertfordshire Sarcopenia Study
Sarcopenia has been defined as low muscle mass and physical performance, and recognition of its importance in clinical practice is growing. Declines in muscle mitochondrial function with age have been described although less is known about the role of mitochondrial dysfunction in sarcopenia. The aim of this study was to investigate whether respiratory chain deficiency is associated with muscle mass and physical performance
In Situ myofiber ubiquitin ligase expression with aging.
<p>Serial images of the red region of gastrocnemius muscle labeled for MHC slow (A,B), MAFbx (C,D) and MuRF1 (E,F) in young adult (YA) (A,C,E) and senescent (SEN) (B,D,F) rats. Fibers sharing the same number are the same fiber in serial sections. Scale bar is 100 µm.</p