18 research outputs found
Comparison of magnetic resonance with computed tomography angiography for preoperative localization of the Adamkiewicz artery in thoracoabdominal aortic aneurysm patients
ObjectivePreoperative localization of the Adamkiewicz artery and its segmental supplier in advance of thoracic aortic aneurysm (TAA) and thoracoabdominal aortic aneurysm (TAAA) repair is proposed to be useful to prevent postoperative paraplegia. The diagnostic potential of magnetic resonance angiography (MRA) and computed tomography angiography (CTA) was evaluated for the preoperative localization of the Adamkiewicz artery in white TAAA patients.MethodsThirty-nine consecutive patients with a TAA(A) scheduled for elective open surgical aortic repair preoperatively underwent MRA and CTA. Objective image quality was assessed by measuring the signal-to-noise ratio and contrast-to-noise ratio of the Adamkiewicz artery and was related to patient thickness. Two independent observers scored the location of the Adamkiewicz artery and the subjective image quality of vessel-background contrast of the Adamkiewicz artery, image noise, spinal cord tissue enhancement, epidural venous enhancement, and overall image quality.ResultsAverage detection rate for Adamkiewicz artery localization was 71% (67% to 74%) for CTA and 97% (94% to 100%) for MRA. Interobserver agreement was 82% for CTA and 94% for MRA. Signal-to-noise ratio was significantly higher (P < .001) and contrast-to-noise ratio was significantly (P < .001) lower for CTA than for MRA. Contrast of the Adamkiewicz artery (P < .001) and overall image quality (P < .004) were judged to be significantly better for MRA. Spinal cord tissue enhancement was judged stronger at CTA (P < .03), with significantly less epidural venous enhancement (P < .001). No significant difference was found in image noise. Signal-to-noise and contrast-to-noise decreased significantly (P < .001) with increasing patient thickness for CTA but not for MRA.ConclusionsLocalization of the Adamkiewicz artery in white TAAA patients is possible with both CTA and MRA. Compared with CTA, MRA is more favorable because of the higher Adamkiewicz artery detection rate, the higher contrast-to-noise ratio, and its independence of patient thickness
Automated multiscale vessel analysis for the quantification of MR angiography of peripheral arteriogenesis
Purpose: To automatically analyze the time course of collateralization in a rat hindlimb ischemia model based on signal intensity distribution (SID). Materials and Methods: Time-of-flight magnetic resonance angiograms (TOF-MRA) were acquired in eight rats at 2, 7, and 21 days after unilateral femoral artery ligation. Analysis was performed on maximum intensity projections filtered with multiscale vessel enhancement filter. Differences in SID between ligated limb and a reference region were monitored over time and compared to manual collateral artery identification. Results: The differences in SID correlated well with the number of collateral arteries found with manual quantification. The time courses of ultrasmall (diamete
MR Angiography of Collateral Arteries in a Hind Limb Ischemia Model: Comparison between Blood Pool Agent Gadomer and Small Contrast Agent Gd-DTPA
The objective of this study was to compare the blood pool agent Gadomer with a small contrast agent for the visualization of ultra-small, collateral arteries (diameter<1 mm) with high resolution steady-state MR angiography (SS-MRA) in a rabbit hind limb ischemia model. Ten rabbits underwent unilateral femoral artery ligation. On days 14 and 21, high resolution SS-MRA (voxel size 0.49×0.49×0.50 mm(3)) was performed on a 3 Tesla clinical system after administration of either Gadomer (dose: 0.10 mmol/kg) or a small contrast agent (gadopentetate dimeglumine (Gd-DTPA), dose: 0.20 mmol/kg). All animals received both contrast agents on separate days. Selective intra-arterial x-ray angiograms (XRAs) were obtained in the ligated limb as a reference. The number of collaterals was counted by two independent observers. Image quality was evaluated with the contrast-to-noise ratio (CNR) in the femoral artery and collateral arteries. CNR for Gadomer was higher in both the femoral artery (Gadomer: 73±5 (mean ± SE); Gd-DTPA: 40±3; p<0.01) and collateral arteries (Gadomer: 18±4; Gd-DTPA: 9±1; p = 0.04). Neither day of acquisition nor contrast agent used influenced the number of identified collateral arteries (p = 0.30 and p = 0.14, respectively). An average of 4.5±1.0 (day 14, mean ± SD) and 5.3±1.2 (day 21) collaterals was found, which was comparable to XRA (5.6±1.7, averaged over days 14 and 21; p>0.10). Inter-observer variation was 24% and 18% for Gadomer and Gd-DTPA, respectively. In conclusion, blood pool agent Gadomer improved vessel conspicuity compared to Gd-DTPA. Steady-state MRA can be considered as an excellent non-invasive alternative to intra-arterial XRA for the visualization of ultra-small collateral arteries
Glyoxalase-1 overexpression partially prevents diabetes-induced impaired arteriogenesis in a rat hindlimb ligation model
We hypothesize that diabetes-induced impaired collateral formation after a hindlimb ligation in rats is in part caused by intracellular glycation and that overexpression of glyoxalase-I (GLO-I), i.e. the major detoxifying enzyme for advanced-glycation-endproduct (AGE) precursors, can prevent this. Wild-type and GLO-I transgenic rats with or without diabetes (induced by 55 mg/kg streptozotocin) were subjected to ligation of the right femoral artery. Laser Doppler perfusion imaging showed a significantly decreased blood perfusion recovery after 6 days in the diabetic animals compared with control animals, without any effect of Glo1 overexpression. In vivo time-of-flight magnetic resonance angiography at 7-Tesla showed a significant decrease in the number and volume of collaterals in the wild-type diabetic animals compared with the control animals. Glo1 overexpression partially prevented this decrease in the diabetic animals. Diabetes-induced impairment of arteriogenic adaptation can be partially rescued by overexpressing of GLO-I, indicating a role of AGEs in diabetes-induced impaired collateral formation
Dynamic contrast-enhanced MR imaging of carotid atherosclerotic plaque: model selection, reproducibility, and validation
To compare four known pharmacokinetic models for their ability to describe dynamic contrast material-enhanced magnetic resonance (MR) imaging of carotid atherosclerotic plaques, to determine reproducibility, and to validate the results with histologic findings. The study was approved by the institutional medical ethics committee. Written informed consent was obtained from all patients. Forty-five patients with 30%-99% carotid stenosis underwent dynamic contrast-enhanced MR imaging. Plaque enhancement was measured at 16 time points at approximately 25-second image intervals by using a gadolinium-based contrast material. Pharmacokinetic parameters (volume transfer constant, K(trans); extracellular extravascular volume fraction, v(e); and blood plasma fraction, v(p)) were determined by fitting a two-compartment model to plaque and blood gadolinium concentration curves. The relative fit errors and parameter uncertainties were determined to find the most suitable model. Sixteen patients underwent imaging twice to determine reproducibility. Carotid endarterectomy specimens from 16 patients who were scheduled for surgery were collected for histologic validation. Parameter uncertainties were compared with the Wilcoxon signed rank test. Reproducibility was assessed by using the coefficient of variation. Correlation with histologic findings was evaluated with the Pearson correlation coefficient. The mean relative fit uncertainty (±standard error) for K(trans) was 10% ± 1 with the Patlak model, which was significantly lower than that with the Tofts (20% ± 1), extended Tofts (33% ± 3), and extended graphical (29% ± 3) models (P < .001). The relative uncertainty for v(p) was 20% ± 2 with the Patlak model and was significantly higher with the extended Tofts (46% ± 9) and extended graphical (35% ± 5) models (P < .001). The reproducibility (coefficient of variation) for the Patlak model was 16% for K(trans) and 26% for v(p). Significant positive correlations were found between K(trans) and the endothelial microvessel content determined on histologic slices (Pearson ρ = 0.72, P = .005). The Patlak model is most suited for describing carotid plaque enhancement. Correlation with histologic findings validated K(trans) as an indicator of plaque microvasculature, and the reproducibility of K(trans) was goo