1,666 research outputs found

    Convergence of genetic influences in comorbidity

    Full text link
    Abstract Background Predisposition to complex diseases is explained in part by genetic variation, and complex diseases are frequently comorbid, consistent with pleiotropic genetic variation influencing comorbidity. Genome Wide Association (GWA) studies typically assess association between SNPs and a single-disease phenotype. Fisher meta-analysis combines evidence of association from single-disease GWA studies, assuming that each study is an independent test of the same hypothesis. The Rank Product (RP) method overcomes limitations posed by Fisher assumptions, though RP was not designed for GWA data. Methods We modified RP to accommodate GWA data, and we call it modRP. Using p-values output from GWA studies, we aggregate evidence for association between SNPs and related phenotypes. To assess significance, RP randomly samples the observed ranks to develop the null distribution of the RP statistic, and then places the observed RPs into the null distribution. ModRP eliminates the effect of linkage disequilibrium and controls for differences in power at tested SNPs, to meet RP assumptions in application to GWA data. Results After validating modRP based on both positive and negative control studies, we searched for pleiotropic influences on comorbid substance use disorders in a novel study, and found two SNPs to be significantly associated with comorbid cocaine, opium, and nicotine dependence. Placing these SNPs into biological context, we developed a protein network modeling the interaction of cocaine, nicotine, and opium with these variants. Conclusions ModRP is a novel approach to identifying pleiotropic genetic influences on comorbid complex diseases. It can be used to assess association for related phenotypes where raw data is unavailable or inappropriate for analysis using other approaches. The method is conceptually simple and produces statistically significant, biologically relevant results.http://deepblue.lib.umich.edu/bitstream/2027.42/112931/1/12859_2012_Article_5068.pd

    LRpath analysis reveals common pathways dysregulated via DNA methylation across cancer types

    Full text link
    Abstract Background The relative contribution of epigenetic mechanisms to carcinogenesis is not well understood, including the extent to which epigenetic dysregulation and somatic mutations target similar genes and pathways. We hypothesize that during carcinogenesis, certain pathways or biological gene sets are commonly dysregulated via DNA methylation across cancer types. The ability of our logistic regression-based gene set enrichment method to implicate important biological pathways in high-throughput data is well established. Results We developed a web-based gene set enrichment application called LRpath with clustering functionality that allows for identification and comparison of pathway signatures across multiple studies. Here, we employed LRpath analysis to unravel the commonly altered pathways and other gene sets across ten cancer studies employing DNA methylation data profiled with the Illumina HumanMethylation27 BeadChip. We observed a surprising level of concordance in differential methylation across multiple cancer types. For example, among commonly hypomethylated groups, we identified immune-related functions, peptidase activity, and epidermis/keratinocyte development and differentiation. Commonly hypermethylated groups included homeobox and other DNA-binding genes, nervous system and embryonic development, and voltage-gated potassium channels. For many gene sets, we observed significant overlap in the specific subset of differentially methylated genes. Interestingly, fewer DNA repair genes were differentially methylated than expected by chance. Conclusions Clustering analysis performed with LRpath revealed tightly clustered concepts enriched for differential methylation. Several well-known cancer-related pathways were significantly affected, while others were depleted in differential methylation. We conclude that DNA methylation changes in cancer tend to target a subset of the known cancer pathways affected by genetic aberrations.http://deepblue.lib.umich.edu/bitstream/2027.42/112789/1/12864_2012_Article_4373.pd
    • …
    corecore