3 research outputs found

    A study on the defluoridation in water by using natural soil

    Get PDF
    Removal of excess fluoride (F−) from the water has been attempted by several authors by using different materials both natural and artificial. The main aim of this paper was to attempt the fluoride removal by using the locally available red soil adopting column method. The red soil was mixed in different proportion with sand in order to increase the porosity and permeability property of the medium. It was optimized for 4:1 ratio of red soil to sand and it was used for the following experiment. The experiment was conducted in 11 batches for a period of about 9,213 min. Fresh standard solution of F was used in each batch, prepared from Orion 1,000 ppm solution. The samples were collected and analyzed for pH, EC (Electrical Conductivity) and HCO3. Rate of flow of water and efficiency of adsorption were calculated and compared with the fluoride removal capacities of the medium. The medium used for the fluoride removal was subjected to FTIR analysis before and after the experiment. The variation of IR spectrum before and after treatment signifies the changes in the OH bonding between Al and Fe ions present in the soil. The variation in pH decreased during the course of defluoridation. Higher F removal was noted when flow rate was lesser. An attempt on the regeneration of the fluoride adsorbed soil was also made and found to be effective

    Effects of Soil-Structure Interaction on Torsionally Coupled Base Isolated Machine Foundation under Earthquake Load

    No full text
    In this paper, the influence of soil-structure interaction (SSI) on a torsionally coupled turbo-generator (TG) machine foundation is studied under earthquake ground motions. The beneficial effects of base isolators in the TG foundation under earthquake ground motions are also studied duly, considering the effects of SSI. A typical TG foundation is analyzed using a three-dimensional finite element (FE) model. Two superstructure eccentricity ratios are considered to represent the torsional coupling. Soft soil properties are considered to study the effects of SSI. This research concludes that the effects of torsional coupling alter the natural frequencies, if ignored, could lead to unsafe design. The deck accelerations and displacements are increased with an increase in superstructure eccentricity. On the other hand, the deck accelerations and displacements are greatly reduced with the help of base isolators, thus confirming the beneficial use of base isolators in machine foundations to protect the sensitive equipment from the strong earthquake ground motions. However, the effects of SSI reduce the natural frequencies of the TG foundation resting on soft soil conditions and activate the higher mode participation, resulting in amplifying the response
    corecore