1,207 research outputs found

    Two-fermion relativistic bound states in Light-Front Dynamics

    Full text link
    In the Light-Front Dynamics, the wave function equations and their numerical solutions, for two fermion bound systems, are presented. Analytical expressions for the ladder one-boson exchange interaction kernels corresponding to scalar, pseudoscalar, pseudovector and vector exchanges are given. Different couplings are analyzed separately and each of them is found to exhibit special features. The results are compared with the non relativistic solutions.Comment: 40 pages, to be published in Phys. Rev. C, .tar.gz fil

    Electromagnetic form factors in the light-front formalism and the Feynman triangle diagram: spin-0 and spin-1 two-fermion systems

    Get PDF
    The connection between the Feynman triangle diagram and the light-front formalism for spin-0 and spin-1 two-fermion systems is analyzed. It is shown that in the limit q+ = 0 the form factors for both spin-0 and spin-1 systems can be uniquely determined using only the good amplitudes, which are not affected by spurious effects related to the loss of rotational covariance present in the light-front formalism. At the same time, the unique feature of the suppression of the pair creation process is maintained. Therefore, a physically meaningful one-body approximation, in which all the constituents are on their mass-shells, can be consistently formulated in the limit q+ = 0. Moreover, it is shown that the effects of the contact term arising from the instantaneous propagation of the active constituent can be canceled out from the triangle diagram by means of an appropriate choice of the off-shell behavior of the bound state vertexes; this implies that in case of good amplitudes the Feynman triangle diagram and the one-body light-front result match exactly. The application of our covariant light-front approach to the evaluation of the rho-meson elastic form factors is presented.Comment: corrected typos in the reference

    Fluxes and spectral indices of rare and abundant cosmic ray nuclei according to the NUCLEON space experiment

    Full text link
    In this paper the dependence of the spectra of cosmic ray nuclei on the charges of nuclei was studied, according to the data of the NUCLEON space experiment. First, we studied the dependence of the spectral index of magnetic rigidity spectra on the charge for abundant nuclei. Secondly, for the charge range Z=9÷20Z=9\div20, the differences in the total spectra of rare odd and abundant even nuclei were studied. Using the GALPROP package, the inverse problem of CR propagation from a source (near supernova) to an observer was solved, a component-by-component spectrum in the source was reconstructed, and it was shown that a systematic change in the spectral index in the source exist. It is supposed that this change may be interpreted as incomplete ionization of cosmic rays at the stage of acceleration in the supernova remnant shock. The ratio of the total spectra of magnetic rigidity for low-abundance odd and abundant even nuclei from the charge range Z=9÷20Z=9\div20 is obtained, and it was shown that the spectra of odd rare nuclei are harder than the stpectra of abundat even nuclei in the rigidity range 300--10000~GV.Comment: 7 pages 4 figures, accepted in Bulletin of the Russian Academy of Sciences: Physics V.87(7), 202

    Large Rapidity Gap Processes in Proton-Nucleus Collisions

    Full text link
    The cross sections for a variety of channels of proton-nucleus interaction associated with large gaps in rapidity are calculated within the Glauber-Gribov theory. We found inelastic shadowing corrections to be dramatically enhanced for such events. We employ the light-cone dipole formalism which allows to calculate the inelastic corrections to all orders of the multiple interaction. Although Gribov corrections are known to make nuclear matter more transparent, we demonstrate that in some instances they lead to an opaqueness. Numerical calculations are performed for the energies of the HERA-B experiment, and the RHIC-LHC colliders.Comment: 19 page

    Deuteron-Proton Elastic Scattering at Intermediate Energies

    Full text link
    The deuteron-proton elastic scattering has been studied in the multiple scattering expansion formalism. The essential attention has been given to such relativistic problem as a deuteron wave function in a moving frame and transformation of spin states due to Wigner rotation. Parameterization of the nucleon-nucleon tt-matrix has been used to take the off-energy shell effects into account. The vector, Ay,A_y, and tensor, AyyA_{yy}, analyzing powers of the deuteron have been calculated at two deuteron kinetic energies: 395 MeV and 1200 MeV. The obtained results are compared with the experimental data

    Charm production nearby threshold in pA-interactions at 70 GeV

    Full text link
    The results of the SERP-E-184 experiment at the U-70 accelerator (IHEP, Protvino) are presented. Interactions of the 70 GeV proton beam with C, Si and Pb targets were studied to detect decays of charmed D0D^0, D0\overline D^0, D+D^+, DD^- mesons and Λc+\Lambda _c^+ baryon near their production threshold. Measurements of lifetimes and masses are shown a good agreement with PDG data. The inclusive cross sections of charm production and their A-dependencies were obtained. The yields of these particles are compared with the theoretical predictions and the data of other experiments. The measured cross section of the total open charm production (σtot(cc)\sigma _{\mathrm {tot}}(c\overline c) = 7.1 ±\pm 2.3(stat) ±\pm 1.4(syst) μ\mu b/nucleon) at the collision c.m. energy s\sqrt {s} = 11.8 GeV is well above the QCD model predictions. The contributions of different species of charmed particles to the total cross section of the open charm production in proton-nucleus interactions vary with energy.Comment: 4 pages, 6 pages, 38th International Conference on High Energy Physics 3-10 August 2016, Chicago, US

    THE APPLICATION OF SCANNING ELECTRON MICROSCOPY USING ENERGY- AND WAVELENGTH DISPERSIVE SPECTROMETERS FOR CHEMICAL DATING OF URANIUM MINERALIZATION ON THE EXAMPLE OF CARBONACEOUS SHALES OF THE DABANZHALGA SUITE (EAST SAYAN)

    Get PDF
    On the one hand, the widespread use of electron microprobe analysis in the version of a scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS) and, on the other hand, the comparability of the metrological characteristics of the EDS and wavelength dispersive spectrometry (WDS) in the case of determining the major components of minerals are a favourable background for investigating the possibility of using SEM-EDS for chemical dating of uranium mineralization. Carbonaceous-siliceous formations of the Dabanzhalga suite are widespread in carbonate deposits of the Lower Paleozoic in the Oka structural-formational zone of the East Sayan and represent deep-water deposits of the back-arc basin. All varieties of carbonaceous-siliceous rocks of the Dabanzhalga suite are characterized by increased U, Au, Ag, Pt, Pd, Mo, V, P, Cu. Their amounts are 5–10 times higher than those for other black shale deposits of the Eastern Sayan. Uranium forms its minerals – uraninite and brannerite, in association with carbonaceous matter and sulfides, and is also part of anhydrous phosphates – xenotime, monazite. The paper presents data on the composition and dating of brannerite and uraninite in samples of carbonaceous-siliceous shale sampled at three sites: Uber-Zhadoy, Deed-Khara-Zhalga and Erye-Khara-Zhalga. The obtained estimates of the isochronous dates of uraninite and brannerite grains for these areas are 523±26, 506±10, and 511±17 Ma, respectively. It was shown that these dates could be compared with the age of metamorphism at the Sukhoi Log deposit, estimated using modern methods of isotope geochronology. It should be noted that the average estimates of the dates of uraninite and brannerite in all studied areas of the Dabanzhalga suite are lower than the corresponding estimates of the isochronous date, which is probably due to the partial loss of radiogenic lead. For the Uber-Zhadoy site, a comparison of the EDS and WDS data was carried out, and it was shown that when using the EDS data, there is an underestimation of the Pb content in uraninite, and, as a consequence, an underestimation of the age of uraninite

    Poincare' Covariant Current Operator and Elastic Electron-Deuteron Scattering in the Front-form Hamiltonian Dynamics

    Full text link
    The deuteron electromagnetic form factors, A(Q2)A(Q^2) and B(Q2)B(Q^2), and the tensor polarization T20(Q2)T_{20}(Q^2), are unambiguously calculated within the front-form relativistic Hamiltonian dynamics, by using a novel current, built up from one-body terms, which fulfills Poincar\'e, parity and time reversal covariance, together with Hermiticity and the continuity equation. A simultaneous description of the experimental data for the three deuteron form factors is achieved up to Q2<0.4(GeV/c)2Q^2 < 0.4 (GeV/c)^2. At higher momentum transfer, different nucleon-nucleon interactions strongly affect A(Q2)A(Q^2), B(Q2)B(Q^2), and T20(Q2)T_{20}(Q^2) and the effects of the interactions can be related to SS-state kinetic energy in the deuteron. Different nucleon form factor models have huge effects on A(Q2)A(Q^2), smaller effects on B(Q2)B(Q^2) and essentially none on T20(Q2)T_{20}(Q^2).Comment: 31 pages + 16 figures. Submitted to Phys. Rev.
    corecore