27 research outputs found

    Hypoglycemia and Death in Mice Following Experimental Exposure to an Extract of Trogia venenata Mushrooms

    Get PDF
    BACKGROUND: Clusters of sudden unexplained death (SUD) in Yunnan Province, China, have been linked to eating Trogia venenata mushrooms. We evaluated the toxic effect of this mushroom on mice. METHODS: We prepared extracts of fresh T. venenata and Laccaria vinaceoavellanea mushrooms collected from the environs of a village that had SUD. We randomly allocated mice into treatment groups and administered mushroom extracts at doses ranging from 500 to 3500 mg/kg and water (control) via a gavage needle. We observed mice for mortality for 7 days after a 3500 mg/kg dose and for 24 hours after doses from 500 to 3000 mg/kg. We determined biochemical markers from serum two hours after a 2000 mg/kg dose. RESULTS: Ten mice fed T. venenata extract (3500 mg/kg) died by five hours whereas all control mice (L. vinaceoavellanea extract and water) survived the seven-day observation period. All mice died by five hours after exposure to single doses of T. venenata extract ranging from 1500 to 3000 mg/kg, while the four mice exposed to a 500 mg/kg dose all survived. Mice fed 2000 mg/kg of T. venenata extract developed profound hypoglycemia (median= 0.66 mmol/L) two hours after exposure. DISCUSSION: Hypoglycemia and death within hours of exposure, a pattern unique among mushroom toxicity, characterize T. venenata poisoning

    Clusters of Sudden Unexplained Death Associated with the Mushroom, Trogia venenata, in Rural Yunnan Province, China

    Get PDF
    INTRODUCTION: Since the late 1970's, time-space clusters of sudden unexplained death (SUD) in northwest Yunnan, China have alarmed the public and health authorities. From 2006-2009, we initiated enhanced surveillance for SUD to identify a cause, and we warned villagers to avoid eating unfamiliar mushrooms. METHODS: We established surveillance for SUD, defined as follows: sudden onset of serious, unexplained physical impairment followed by death in <24 hours. A mild case was onset of any illness in a member of the family or close socially related group of a SUD victim within 1 week of a SUD. We interviewed witnesses of SUD and mild case-persons to identify exposures to potentially toxic substances. We tested blood from mild cases, villagers, and for standard biochemical, enzyme, and electrolyte markers of disease. RESULTS: We identified 33 SUD, a 73% decline from 2002-2005, distributed among 21 villages of 11 counties. We found a previously undescribed mushroom, Trogia venenata, was eaten by 5 of 7 families with SUD clusters compared to 0 of 31 other control-families from the same villages. In T. venenata-exposed persons SUD was characterized by sudden loss of consciousness during normal activities. This mushroom grew nearby 75% of 61 villages that had time-space SUD clusters from 1975 to 2009 compared to 17% of 18 villages with only single SUD (p<0.001, Fisher's exact test). DISCUSSION: Epidemiologic data has implicated T. venenata as a probable cause of clusters of SUD in northwestern Yunnan Province. Warnings to villagers about eating this mushroom should continue

    Caffeine poisoning and lactate rise: an overlooked toxic effect?

    No full text
    Severe caffeine poisoning is rare but associated with a high mortality. The symptoms are mainly attributable to hyperadrenergic stimulation, are relatively well known and described in the literature. Transient rises in plasma lactate levels may occur but are, however, less well described. We present a case of serious caffeine poisoning with a concomitant rise in lactate treated with a non-selective beta-blocker and discuss briefly the symptomatology, the management of caffeine poisoning and the association between lactate and metabolic acidosis
    corecore