4 research outputs found
Supplementary Material for: Expert Statement: Pneumothorax Associated with One-Way Valve Therapy for Emphysema: 2020 Update
For selected patients with advanced emphysema, bronchoscopic lung volume reduction with one-way valves can lead to clinically relevant improvements of airflow obstruction, hyperinflation, exercise capacity, and quality of life. The most common complication of this procedure is pneumothorax with a prevalence of up to ±34% of the treated patients. Patients who develop a pneumothorax also experience meaningful clinical benefits once the pneumothorax is resolved. Timely resolution of a post-valve treatment pneumothorax requires skilled and adequate pneumothorax management. This expert panel statement is an updated recommendation of the 2014 statement developed to help guide pneumothorax management after valve placement. Additionally, mechanisms for pneumothorax development, risk assessment, prevention of pneumothorax, and outcomes after pneumothorax are addressed. This recommendation is based on a combination of the current scientific literature and expert opinion, which was obtained through a modified Delphi method
Supplementary Material for: Crossover Patient Outcomes for Targeted Lung Denervation in Moderate to Severe Chronic Obstructive Pulmonary Disease: AIRFLOW-2
Background: Targeted Lung Denervation (TLD) is a potential new therapy for COPD. Radiofrequency energy is bronchoscopically delivered to the airways to disrupt pulmonary parasympathetic nerves, to reduce bronchoconstriction, mucus hypersecretion, and bronchial hyperreactivity. Objectives: This work assesses the effect of TLD on COPD exacerbations (AECOPD) in crossover subjects in the AIRFLOW-2 trial. Method: The AIRFLOW-2 trial is a multicentre, randomized, double-blind, sham-controlled crossover trial of TLD in COPD. Patients with symptomatic COPD on optimal medical therapy with an FEV1 of 30–60% predicted received either TLD or sham bronchoscopy in a 1:1 randomization. Those in the sham arm had the opportunity to cross into the treatment arm after 12 months. The primary end point was rate of respiratory adverse events. Secondary end points included adverse events, changes in lung function and health-related quality of life and symptom scores. Results: Twenty patients were treated with TLD in the crossover phase and were subsequently followed up for 12 months (50% female, mean age 64.1 ± 6.9 years). After TLD, there was a trend towards a reduction in time to first AECOPD (hazard ratio 0.65, p = 0.28, not statistically significant) in comparison to sham follow-up period. There was also a reduction in time to first severe AECOPD in the crossover period (hazard ratio 0.38, p = 0.227, not statistically significant). Symptom scores and lung function showed stability. Conclusions: AIRFLOW-2 crossover data support that of the randomization phase, showing trends towards reduction in COPD exacerbations with TLD
Supplementary Material for: Bronchoscopic Lung Volume Reduction Coil Treatment for Severe Emphysema: A Systematic Review and Meta-Analysis of Individual Participant Data
Background: Lung volume reduction coil (LVR-coil) treatment provides a minimally invasive treatment option for severe emphysema patients which has been studied in multiple clinical trials. Objectives: The aim of the study was to assess the effect of LVR-coil treatment on pulmonary function, quality of life, and exercise capacity using individual participant data. Method: PubMed, Web of Science, and EMBASE were searched until May 17, 2021. Prospective single-arm and randomized controlled trials that evaluated the effect of LVR-coil treatment on forced expiratory volume in 1 s (FEV1), residual volume (RV), St. George Respiratory Questionnaire (SGRQ) total score, and/or 6-min walk distance (6MWD) and were registered in an official clinical trial database were eligible for inclusion. Individual patient data were requested, and a linear mixed effects model was used to calculate overall treatment effects. Results: Eight trials were included in the final analysis, representing 680 individual patients. LVR-coil treatment resulted in a significant improvement in FEV1 at 3- (0.09 L [95% confidence interval (95% CI): 0.06–0.12]) and 6-month follow-up (0.07 L [95% CI: 0.03–0.10]), a significant reduction in RV at 3- (−0.45L [95% CI: −0.62 to −0.28]), 6- (−0.33L [95% CI: −0.52 to −0.14]), and 12-month follow-up (−0.36L [95% CI: −0.64 to −0.08]), a significant reduction in SGRQ total score at 3- (−12.3 points [95% CI: −15.8 to −8.8]), 6- (−10.1 points [95% CI: −12.8 to −7.3]), and 12-month follow-up (−9.8 points [95% CI: −15.0 to −4.7]) and a significant increase in 6MWD at 3-month follow-up (38 m [95% CI: 18–58]). Conclusions: LVR-coil treatment in emphysema patients results in sustained improvements in pulmonary function and quality of life and shorter lived improvements in exercise capacity. Since the owner of this LVR-coil has decided to stop the production and newer generations LVR-coils are currently being developed, these results can act as a reference for future studies and clinical guidance