15 research outputs found

    AATF, a novel transcription factor that interacts with Dlk/ZIP kinase and interferes with apoptosis11Accession no. for rat AATF nucleotide sequence at the EMBL GenBank database is RNO238717.

    Get PDF
    AbstractDlk, also known as ZIP kinase, is a serine/threonine kinase that is tightly associated with nuclear structures. Under certain conditions, which require cytoplasmic localization, Dlk can induce apoptosis. In search for interaction partners that might serve as regulators or targets of this kinase we identified apoptosis antagonizing transcription factor (AATF), a nuclear phosphoprotein of 523 amino acids. The 1.8 kb mRNA seems to be ubiquitously expressed. AATF contains an extremely acidic domain and a putative leucine zipper characteristic of transcription factors. Indeed, a Gal4-BD-AATF fusion protein exhibited strong transactivation activity. Interestingly, AATF interfered with Dlk-induced apoptosis

    Immunochemical and electrophysiological characterization of murine connexin40 and -43 in mouse tissues and transfected human cells

    Get PDF
    Human HeLa or SkHep1 cells, defective in intercellular communication through gap junctions, were transfected with coding sequences of murine connexin40 (Cx40) and -43. The transfected cells were restored in gap junctional coupling as shown by 100-fold increased electrical conductance. When studied by the double whole-cell patch-clamp technique, Cx40 HeLa transfectans exhibited single channel conductances of γ=121 ± 7 pS and γ=153 ± 5 pS. They were voltage gated with an equivalent gating charge of z=4.0 ± 0.5 for a voltage of half-maximal inactivation U 9= 44 ± 7 mV. The corresponding values or connexin43 (Cx43) HeLa transfectants are: γ=60 ± 4 pS and γ=40 ± 2 pS as well as z=3.7 ± 0.8 and U 0 = 73 ± 7 mV. Transfer of the dye Lucifer Yellow was always considerably lower in Cx4- than in Cx43-transfectants though their total junctional conductance was similar or even higher than for Cx43-transfectants

    DNA Substrate Dependence of p53-Mediated Regulation of Double-Strand Break Repair

    No full text
    DNA double-strand breaks (DSBs) arise spontaneously after the conversion of DNA adducts or single-strand breaks by DNA repair or replication and can be introduced experimentally by expression of specific endonucleases. Correct repair of DSBs is central to the maintenance of genomic integrity in mammalian cells, since errors give rise to translocations, deletions, duplications, and expansions, which accelerate the multistep process of tumor progression. For p53 direct regulatory roles in homologous recombination (HR) and in non-homologous end joining (NHEJ) were postulated. To systematically analyze the involvement of p53 in DSB repair, we generated a fluorescence-based assay system with a series of episomal and chromosomally integrated substrates for I-SceI meganuclease-triggered repair. Our data indicate that human wild-type p53, produced either stably or transiently in a p53-negative background, inhibits HR between substrates for conservative HR (cHR) and for gene deletions. NHEJ via microhomologies flanking the I-SceI cleavage site was also downregulated after p53 expression. Interestingly, the p53-dependent downregulation of homology-directed repair was maximal during cHR between sequences with short homologies. Inhibition was minimal during recombination between substrates that support reporter gene reconstitution by HR and NHEJ. p53 with a hotspot mutation at codon 281, 273, 248, 175, or 143 was severely defective in regulating DSB repair (frequencies elevated up to 26-fold). For the transcriptional transactivation-inactive variant p53(138V) a defect became apparent with short homologies only. These results suggest that p53 plays a role in restraining DNA exchange between imperfectly homologous sequences and thereby in suppressing tumorigenic genome rearrangements
    corecore