70 research outputs found

    MicroRNAs: a potential interface between the circadian clock and human health

    Get PDF
    The biochemical activity of a stunning diversity of cell types and organ systems is shaped by a 24-hour (circadian) clock. This rhythmic drive to a good deal of the transcriptome (up to 15% of all coding genes) imparts circadian modulation over a wide range of physiological and behavioral processes (from cell division to cognition). Further, dysregulation of the clock has been implicated in the pathogenesis of a large and diverse array of disorders, such as hypertension, cancer and depression. Indeed, the possibility of utilizing therapeutic approaches that target clock physiology (that is, chronotherapy) has gained broad interest. However, a deeper understanding of the underlying molecular mechanisms that modulate the clock, and give rise to organ-specific clock transcriptomes, will be required to fully realize the power of chronotherapies. Recently, microRNAs have emerged as significant players in circadian clock timing, thus raising the possibility that clock-controlled microRNAs could contribute to disorders of the human circadian timing system. Here, we highlight recent work revealing a key role for microRNAs in clock physiology, and discuss potential approaches to unlocking their utility as effectors of circadian physiology and pathophysiology

    The miR-132/212 locus: a complex regulator of neuronal plasticity, gene expression and cognition

    Get PDF
    The microRNA (miRNA) class of small (typically 22-24 nt) non-coding RNA affects a wide range of physiological processes in the mammalian central nervous system (CNS). By acting as potent regulators of mRNA translation and stability, miRNAs fine-tune the expression of a multitude of genes that play critical roles in complex cognitive processes, including learning and memory. Of note, within the CNS, miRNAs can be expressed in an inducible, and cell-type specific manner. Here, we provide a brief overview of the expression and functional effects of the miR-132/212 gene locus in forebrain circuits of the CNS, and then discuss a recent publication that explored the contributions of miR-132 and miR-212 to cognition and to transcriptome regulation. We also discuss mechanisms by which synaptic activity regulates miR-132/212 expression, how miR-132 and miR-212 affect neuronal plasticity, and how the dysregulation of these two miRNAs could contribute to the development of cognitive impairments

    Targeted deletion of miR-132/-212 impairs memory and alters the hippocampal transcriptome

    Get PDF
    miR-132 and miR-212 are structurally related microRNAs that have been found to exert powerful modulatory effects within the central nervous system (CNS). Notably, these microRNAs are tandomly processed from the same noncoding transcript, and share a common seed sequence: thus it has been difficult to assess the distinct contribution of each microRNA to gene expression within the CNS. Here, we employed a combination of conditional knockout and transgenic mouse models to examine the contribution of the miR-132/-212 gene locus to learning and memory, and then to assess the distinct effects that each microRNA has on hippocampal gene expression. Using a conditional deletion approach, we show that miR-132/-212 double-knockout mice exhibit significant cognitive deficits in spatial memory, recognition memory, and in tests of novel object recognition. Next, we utilized transgenic miR-132 and miR-212 overexpression mouse lines and the miR-132/-212 double-knockout line to explore the distinct effects of these two miRNAs on the transcriptional profile of the hippocampus. Illumina sequencing revealed that miR-132/-212 deletion increased the expression of 1138 genes; Venn analysis showed that 96 of these genes were also downregulated in mice overexpressing miR-132. Of the 58 genes that were decreased in animals overexpressing miR-212, only four of them were also increased in the knockout line. Functional gene ontology analysis of downregulated genes revealed significant enrichment of genes related to synaptic transmission, neuronal proliferation, and morphogenesis, processes known for their roles in learning, and memory formation. These data, coupled with previous studies, firmly establish a role for the miR-132/-212 gene locus as a key regulator of cognitive capacity. Further, although miR-132 and miR-212 share a seed sequence, these data indicate that these miRNAs do not exhibit strongly overlapping mRNA targeting profiles, thus indicating that these two genes may function in a complex, nonredundant manner to shape the transcriptional profile of the CNS. The dysregulation of miR-132/-212 expression could contribute to signaling mechanisms that are involved in an array of cognitive disorders

    Mitogen- and Stress-Activated Protein Kinase 1 Regulates Status Epilepticus-Evoked Cell Death in the Hippocampus

    Get PDF
    Mitogen-activated protein kinase (MAPK) signaling has been implicated in a wide range of neuronal processes, including development, plasticity, and viability. One of the principal downstream targets of both the extracellular signal-regulated kinase/MAPK pathway and the p38 MAPK pathway is M itogen- and S tress-activated protein K inase 1 (MSK1). Here, we sought to understand the role that MSK1 plays in neuroprotection against excitotoxic stimulation in the hippocampus. To this end, we utilized immunohistochemical labeling, a MSK1 null mouse line, cell viability assays, and array-based profiling approaches. Initially, we show that MSK1 is broadly expressed within the major neuronal cell layers of the hippocampus and that status epilepticus drives acute induction of MSK1 activation. In response to the status epilepticus paradigm, MSK1 KO mice exhibited a striking increase in vulnerability to pilocarpine-evoked cell death within the CA1 and CA3 cell layers. Further, cultured MSK1 null neurons exhibited a heighted level of N-methyl-D-aspartate-evoked excitotoxicity relative to wild-type neurons, as assessed using the lactate dehydrogenase assay. Given these findings, we examined the hippocampal transcriptional profile of MSK1 null mice. Affymetrix array profiling revealed that MSK1 deletion led to the significant (>1.25-fold) downregulation of 130 genes and an upregulation of 145 genes. Notably, functional analysis indicated that a subset of these genes contribute to neuroprotective signaling networks. Together, these data provide important new insights into the mechanism by which the MAPK/MSK1 signaling cassette confers neuroprotection against excitotoxic insults. Approaches designed to upregulate or mimic the functional effects of MSK1 may prove beneficial against an array of degenerative processes resulting from excitotoxic insults

    Circadian regulation of intracellular G-protein signalling mediates intercellular synchrony and rhythmicity in the suprachiasmatic nucleus

    Get PDF
    Synchronous oscillations of thousands of cellular clocks in the suprachiasmatic nucleus (SCN), the circadian centre, are coordinated by precisely timed cell–cell communication, the principle of which is largely unknown. Here we show that the amount of RGS16 (regulator of G protein signalling 16), a protein known to inactivate GΞ±i, increases at a selective circadian time to allow time-dependent activation of intracellular cyclic AMP signalling in the SCN. Gene ablation of Rgs16 leads to the loss of circadian production of cAMP and as a result lengthens circadian period of behavioural rhythm. The temporally precise regulation of the cAMP signal by clock-controlled RGS16 is needed for the dorsomedial SCN to maintain a normal phase-relationship to the ventrolateral SCN. Thus, RGS16-dependent temporal regulation of intracellular G protein signalling coordinates the intercellular synchrony of SCN pacemaker neurons and thereby defines the 24 h rhythm in behaviour

    Circadian Regulation of Hippocampal-Dependent Memory: Circuits, Synapses, and Molecular Mechanisms

    No full text
    Circadian modulation of learning and memory efficiency is an evolutionarily conserved phenomenon, occurring in organisms ranging from invertebrates to higher mammalian species, including humans. While the suprachiasmatic nucleus (SCN) of the hypothalamus functions as the master mammalian pacemaker, recent evidence suggests that forebrain regions, including the hippocampus, exhibit oscillatory capacity. This finding, as well as work on the cellular signaling events that underlie learning and memory, has opened promising new avenues of investigation into the precise cellular, molecular, and circuit-based mechanisms by which clock timing impacts plasticity and cognition. In this review, we examine the complex molecular relationship between clock timing and memory, with a focus on hippocampal-dependent tasks. We evaluate how the dysregulation of circadian timing, both at the level of the SCN and at the level of ancillary forebrain clocks, affects learning and memory. Further, we discuss experimentally validated intracellular signaling pathways (e.g., ERK/MAPK and GSK3Ξ²) and potential cellular signaling mechanisms by which the clock affects learning and memory formation. Finally, we examine how long-term potentiation (LTP), a synaptic process critical to the establishment of several forms of memory, is regulated by clock-gated processes
    • …
    corecore