234 research outputs found
Instrumental neutron activation analysis of postclassic and historic-period pottery from Soconusco, Chiapas, Mexico [abstract]
Abstract only availableThe study involved utilizing Instrumental Neutron Activation Analysis (INAA) at the University of Missouri Research Reactor (MURR) on 96 pottery samples from the post-classic Mayan (ca. 1000-1500 C.E.) and historic eras excavated from the Soconusco region of Southern Chiapas, Mexico. This was done in order to understand and map the long-distance trade networks of Mesoamerica via the unique chemical characteristics of pottery. The samples were irradiated according to MURR procedures and measured at specific intervals on a gamma-ray spectrometer to yield the relative concentration of elemental composition. The data obtained from the use of INAA has allowed for the creation of compositional groups according to the chemical signatures of the pottery. These groups were then compared with other compositional reference groups from throughout Mesoamerica accumulated within the MURR archives. The results indicate a complex and diverse trade relationship with post-classic pottery dominated by samples produced either locally or in the surrounding Chiapas, and historic pottery being imported across Mexico from Colonial New Spawn sites such as Puebla, Mexico City and perhaps as yet un-identified production centers. It is hoped that an increase in further comparative data will help in the locating of these additional pottery production centers. From these results, this study seeks to add greater depth to the discussion of inter-regional trade systems across Mesoamerica in both the post-classic and historic periods and enhance the conclusions drawn from those discussions
Simulating magnetic fields in the Antennae galaxies
We present self-consistent high-resolution simulations of NGC4038/4039 (the
"Antennae galaxies") including star formation, supernova feedback and magnetic
fields performed with the N-body/SPH code Gadget, in which magnetohydrodynamics
are followed with the SPH method. We vary the initial magnetic field in the
progenitor disks from 1 nG to 100 muG. At the time of the best match with the
central region of the Antennae system the magnetic field has been amplified by
compression and shear flows to an equilibrium field of approximately 10 muG,
independent of the initial seed field. These simulations are a proof of the
principle that galaxy mergers are efficient drivers for the cosmic evolution of
magnetic fields. We present a detailed analysis of the magnetic field structure
in the central overlap region. Simulated radio and polarization maps are in
good morphological and quantitative agreement with the observations. In
particular, the two cores with the highest synchrotron intensity and ridges of
regular magnetic fields between the cores and at the root of the southern tidal
arm develop naturally in our simulations. This indicates that the simulations
are capable of realistically following the evolution of the magnetic fields in
a highly non-linear environment. We also discuss the relevance of the
amplification effect for present day magnetic fields in the context of
hierarchical structure formation.Comment: 18 pages, 14 figures, accepte
The UV-Optical Galaxy Color-Magnitude Diagram. I. Basic Properties
We have analyzed the bivariate distribution of galaxies as a function of ultraviolet-optical colors and absolute magnitudes in the local universe. The sample consists of galaxies with redshifts and optical photometry from the Sloan Digital Sky Survey (SDSS) main galaxy sample matched with detections in the near-ultraviolet (NUV) and far-ultraviolet (FUV) bands in the Medium Imaging Survey being carried out by the Galaxy Evolution Explorer (GALEX) satellite. In the (NUV − r)_(0.1) versus M_(r,0.1) galaxy color-magnitude diagram, the galaxies separate into two well-defined blue and red sequences. The (NUV − r)_(0.1) color distribution at each M_(r,0.1) is not well fit by the sum of two Gaussians due to an excess of galaxies in between the two sequences. The peaks of both sequences become redder with increasing luminosity, with a distinct blue peak visible up to M_(r,0.1) ~ − 23. The r_(0.1)-band luminosity functions vary systematically with color, with the faint-end slope and characteristic luminosity gradually increasing with color. After correcting for attenuation due to dust, we find that approximately one-quarter of the color variation along the blue sequence is due to dust, with the remainder due to star formation history and metallicity. Finally, we present the distribution of galaxies as a function of specific star formation rate and stellar mass. The specific star formation rates imply that galaxies along the blue sequence progress from low-mass galaxies with star formation rates that increase somewhat with time to more massive galaxies with a more or less constant star formation rate. Above a stellar mass of ~10^(10.5) M_☉, galaxies with low ratios of current to past averaged star formation rate begin to dominate
The Calibration and Data Products of the Galaxy Evolution Explorer
We describe the calibration status and data products pertaining to the GR2
and GR3 data releases of the Galaxy Evolution Explorer (GALEX). These releases
have identical pipeline calibrations that are significantly improved over the
GR1 data release. GALEX continues to survey the sky in the Far Ultraviolet
(FUV, ~154 nm) and Near Ultraviolet (NUV, ~232 nm) bands, providing
simultaneous imaging with a pair of photon counting, microchannel plate, delay
line readout detectors. These 1.25 degree field-of-view detectors are
well-suited to ultraviolet observations because of their excellent red
rejection and negligible background. A dithered mode of observing and photon
list output pose complex requirements on the data processing pipeline,
entangling detector calibrations and aspect reconstruction algorithms. Recent
improvements have achieved photometric repeatability of 0.05 and 0.03 mAB in
the FUV and NUV, respectively. We have detected a long term drift of order 1%
FUV and 6% NUV over the mission. Astrometric precision is of order 0.5" RMS in
both bands. In this paper we provide the GALEX user with a broad overview of
the calibration issues likely to be confronted in the current release.
Improvements are likely as the GALEX mission continues into an extended phase
with a healthy instrument, no consumables, and increased opportunities for
guest investigations.Comment: Accepted to the ApJS (a special GALEX issue
Ly alpha-emitting galaxies at 0.2 < z < 0.35 from GALEX spectroscopy
We have used the GALEX (Galaxy Evolution Explorer) spectroscopic survey mode, with a resolution of similar to 8 angstrom in the far-ultraviolet (FUV; 1350-1750 angstrom) and similar to 20 angstrom in the near-ultraviolet (NUV; 1950-2750 angstrom) for a systematic search of Ly alpha-emitting galaxies at low redshift. Our aim is to fill a gap between high-redshift surveys and a small set of objects studied in detail in the nearby universe. A blind search of 7018 spectra extracted in five deep exposures (5.65 deg(2)) has resulted in 96 Ly alpha-emitting galaxy candidates in the FUV domain after accounting for broad-line AGNs. The Ly alpha equivalent widths (EWs) are consistent with stellar population model predictions and show no trends as a function of UV color or UV luminosity, with the exception of a possible decrease in the most luminous objects that may be due to small-number statistics. The objects' distribution in EW is similar to that at z similar to 3, but their fraction among star-forming galaxies is smaller. Avoiding uncertain candidates, a subsample of 66 objects in the range 0.2 < z < 0.35 has been used to build a Ly alpha luminosity function (LF). The incompleteness due to objects with significant Ly alpha emission but a UV continuum too low for spectral extraction has been evaluated. A comparison with H alpha LFs in the same redshift domain is consistent with an average Ly alpha/H alpha of similar to 1 in about 15% of the star-forming galaxies. A comparison with high-redshift Ly alpha LFs implies an increase of the Ly alpha luminosity density by a factor of about 16 from z similar to 0.3 to z similar to 3. By comparison with the factor of 5 increase in the UV luminosity density in the same redshift range, this suggests an increase of the average Ly alpha escape fraction with redshift
- …