70 research outputs found
Shortened recurrence relations for Bernoulli numbers
AbstractStarting with two little-known results of Saalschütz, we derive a number of general recurrence relations for Bernoulli numbers. These relations involve an arbitrarily small number of terms and have Stirling numbers of both kinds as coefficients. As special cases we obtain explicit formulas for Bernoulli numbers, as well as several known identities
Hankel Determinants of shifted sequences of Bernoulli and Euler numbers
Hankel determinants of sequences related to Bernoulli and Euler numbers have been studied before, and numerous identities are known. However, when a sequence is shifted by one unit, the situation often changes significantly. In this paper we use classical orthogonal polynomials and related methods to prove a general result concerning Hankel determinants for shifted sequences. We then apply this result to obtain new Hankel determinant evaluations for a total of 14 sequences related to Bernoulli and Euler numbers, one of which concerns Euler polynomials
- …