3 research outputs found
Recommended from our members
Quantifying disease activity in rheumatoid arthritis with the TSPO PET ligand 18 F-GE-180 and comparison with 18 F-FDG and DCE-MRI
Abstract: Purpose: While the aetiology of rheumatoid arthritis (RA) remains unclear, many of the inflammatory components are well characterised. For diagnosis and therapy evaluation, in vivo insight into these processes would be valuable. Various imaging probes have shown value including dynamic contrast-enhanced (DCE) MRI and PET/CT using 18F-fluorodeoxyglucose (18F-FDG) or tracers targeting the translocator protein (TSPO). To evaluate 18F-GE-180, a novel TSPO PET tracer, for detecting and quantifying disease activity in RA, we compared 18F-GE-180 uptake with that of 18F-FDG and DCE-MRI measures of inflammation. Methods: Eight RA patients with moderate-to-high, stable disease activity and active disease in at least one wrist were included in this study (NCT02350426). Participants underwent PET/CT examinations with 18F-GE-180 and 18F-FDG on separate visits, covering the shoulders and from the pelvis to the feet, including hands and wrists. DCE-MRI was performed on one affected hand. Uptake was compared visually between tracers as judged by an experienced radiologist and quantitatively using the maximum standardised uptake value (SUVmax). Uptake for both tracers was correlated with DCE-MRI parameters of inflammation, including the volume transfer coefficient Ktrans using Pearson correlation (r). Results: PET/CT imaging with 18F-GE-180 in RA patients showed marked extra-synovial uptake around the affected joints. Overall sensitivity for detecting clinically affected joints was low (14%). 18F-GE-180 uptake did not or only weakly correlate with DCE-MRI parameters in the wrist (r = 0.09–0.31). 18F-FDG showed higher sensitivity for detecting symptomatic joints (34%), as well as strong positive correlation with DCE-MRI parameters (SUVmax vs. Ktrans: r = 0.92 for wrist; r = 0.68 for metacarpophalangeal joints). Conclusions: The correlations between DCE-MRI parameters and 18F-FDG uptake support use of this PET tracer for quantification of inflammatory burden in RA. The TSPO tracer 18F-GE-180, however, has shown limited use for the investigation of RA due to its poor sensitivity and ability to quantify disease activity in RA
Recommended from our members
An open label trial of nemiralisib, an inhaled PI3 kinase delta inhibitor for the treatment of Activated PI3 kinase Delta Syndrome.
Activated PI3Kδ Syndrome (APDS) is a rare inherited inborn error of immunity caused by mutations that constitutively activate the p110 delta isoform of phosphoinositide 3-kinase (PI3Kδ), resulting in recurring pulmonary infections. Currently no licensed therapies are available. Here we report the results of an open-label trial in which five subjects were treated for 12 weeks with nemiralisib, an inhaled inhibitor of PI3Kδ, to determine safety, systemic exposure, together with lung and systemic biomarker profiles (Clinicaltrial.gov: NCT02593539). Induced sputum was captured to measure changes in phospholipids and inflammatory mediators, and blood samples were collected to assess pharmacokinetics of nemiralisib, and systemic biomarkers. Nemiralisib was shown to have an acceptable safety and tolerability profile, with cough being the most common adverse event, and no severe adverse events reported during the study. No meaningful changes in phosphatidylinositol (3,4,5)-trisphosphate (PIP3; the enzyme product of PI3Kδ) or downstream inflammatory markers in induced sputum, were observed following nemiralisib treatment. Similarly, there were no meaningful changes in blood inflammatory markers, or lymphocytes subsets. Systemic levels of nemiralisib were higher in subjects in this study compared to previous observations. While nemiralisib had an acceptable safety profile, there was no convincing evidence of target engagement in the lung following inhaled dosing and no downstream effects observed in either the lung or blood compartments. We speculate that this could be explained by nemiralisib not being retained in the lung for sufficient duration, suggested by the increased systemic exposure, perhaps due to pre-existing structural lung damage. In this study investigating a small number of subjects with APDS, nemiralisib appeared to be safe and well-tolerated. However, data from this study do not support the hypothesis that inhaled treatment with nemiralisib would benefit patients with APDS