350 research outputs found

    Is Disruptive Employee Behavior In Export Processing Zones (EPZs) Influenced By Their Employment In Firms Situated In Public Or Private Zones?

    Get PDF
    The Kenyan government’s Export processing zone (EPZ) policy has conceded large parts of existing labour laws to EPZ investors. This article sets out to establish whether there is a difference in the working conditions employers in the public and private zones expose their workers to and from which zone possible disruptive employee behaviours emanate from. A random sample of 376 employees was selected from EPZ garment firms located in both private and public zones. Statistical procedures were applied to determine possible differences. The findings indicate that employees from companies in the private zones were exposed to better working conditions than those employed in companies located in the public zone, which explains why disruptive employee behaviour originates from the public zone. It is recommended that working conditions of companies in the pubic zone should be improved. Opsomming Die regering se uitvoerprosesseringsbeleid (EPZ) het toegewings in terme van bestaande arbeidswetgewing aan EPZ investeerders gedoen. Hierdie artikel het ten doel om vas te stel of daar ’n verskil bestaan in die werktoestande waaraan werkgewers in die openbare en private sones hulle werknemers blootstel en van watter sone moontlike ontwrigtende gedrag hul oorsprong het. ’n Ewekansige steekproef van 376 werknemers is uit EPZ kledingfirmas in beide die private en openbare sones getrek. Statistiese prosedures is gebruik om moontlike verskille te bepaal. Die bevindinge dui daarop dat werknemers van maatskappy uit private sones aan beter werkstoestande blootgestel is teenoor dié wat uit die publieke sone afkomstige is, wat ook verklaar waarom ontwrigtende gedrag uit die openbare sone onstaan. Dit word aanbeveel dat werktoestande van maatskappye in die openbare sone verbeter word

    Large-scale implementation of disease control programmes: a cost-effectiveness analysis of long-lasting insecticide-treated bed net distribution channels in a malaria-endemic area of western Kenya-a study protocol.

    Get PDF
    Introduction Historically, Kenya has used various distribution models for long-lasting insecticide-treated bed nets (LLINs) with variable results in population coverage. The models presently vary widely in scale, target population and strategy. There is limited information to determine the best combination of distribution models, which will lead to sustained high coverage and are operationally efficient and cost-effective. Standardised cost information is needed in combination with programme effectiveness estimates to judge the efficiency of LLIN distribution models and options for improvement in implementing malaria control programmes. The study aims to address the information gap, estimating distribution cost and the effectiveness of different LLIN distribution models, and comparing them in an economic evaluation. Methods and analysis Evaluation of cost and coverage will be determined for 5 different distribution models in Busia County, an area of perennial malaria transmission in western Kenya. Cost data will be collected retrospectively from health facilities, the Ministry of Health, donors and distributors. Programme-effectiveness data, defined as the number of people with access to an LLIN per 1000 population, will be collected through triangulation of data from a nationally representative, cross-sectional malaria survey, a cross-sectional survey administered to a subsample of beneficiaries in Busia County and LLIN distributors’ records. Descriptive statistics and regression analysis will be used for the evaluation. A cost-effectiveness analysis will be performed from a health-systems perspective, and cost-effectiveness ratios will be calculated using bootstrapping techniques. Ethics and dissemination The study has been evaluated and approved by Kenya Medical Research Institute, Scientific and Ethical Review Unit (SERU number 2997). All participants will provide written informed consent. The findings of this economic evaluation will be disseminated through peer-reviewed publications

    Unraveling the Complex Solid-State Phase Transition Behavior of 1-Iodoadamantane, a Material for Which Ostensibly Identical Crystals Undergo Different Transformation Pathways

    Get PDF
    Phase transitions in crystalline molecular solids have important implications in the fundamental understanding of materials properties and in the development of materials applications. Herein, we report the solid-state phase transition behavior of 1-iodoadamantane (1-IA) investigated using a multi-technique strategy [synchrotron powder X-ray diffraction (XRD), single-crystal XRD, solid-state NMR, and differential scanning calorimetry (DSC)], which reveals complex phase transition behavior on cooling from ambient temperature to ca. 123 K and on subsequent heating to the melting temperature (348 K). Starting from the known phase of 1-IA at ambient temperature (phase A), three low-temperature phases are identified (phases B, C, and D); the crystal structures of phases B and C are reported, together with a re-determination of the structure of phase A. Remarkably, single-crystal XRD shows that some individual crystals of phase A transform to phase B, while other crystals of phase A transform instead to phase C. Results (from powder XRD and DSC) on cooling a powder sample of phase A are fully consistent with this behavior while also revealing an additional transformation pathway from phase A to phase D. Thus, on cooling, a powder sample of phase A transforms partially to phase C (at 229 K), partially to phase D (at 226 K) and partially to phase B (at 211 K). During the cooling process, each of the phases B, C, and D is formed directly from phase A, and no transformations are observed between phases B, C, and D. On heating the resulting triphasic powder sample of phases B, C, and D from 123 K, phase B transforms to phase D (at 211 K), followed by the transformation of phase D to phase C (at 255 K), and finally, phase C transforms to phase A (at 284 K). From these observations, it is apparent that different crystals of phase A, which are ostensibly identical at the level of information revealed by XRD, must actually differ in other aspects that significantly influence their low-temperature phase transition pathways. This unusual behavior will stimulate future studies to gain deeper insights into the specific properties that control the phase transition pathways in individual crystals of this material

    A cross-sectional study of the availability and price of anti-malarial medicines and malaria rapid diagnostic tests in private sector retail drug outlets in rural Western Kenya, 2013.

    Get PDF
    BACKGROUND Although anti-malarial medicines are free in Kenyan public health facilities, patients often seek treatment from private sector retail drug outlets. In mid-2010, the Affordable Medicines Facility-malaria (AMFm) was introduced to make quality-assured artemisinin-based combination therapy (ACT) accessible and affordable in private and public sectors. METHODS Private sector retail drug outlets stocking anti-malarial medications within a surveillance area of approximately 220,000 people in a malaria perennial high-transmission area in rural western Kenya were identified via a census in September 2013. A cross-sectional study was conducted in September-October 2013 to determine availability and price of anti-malarial medicines and malaria rapid diagnostic tests (RDTs) in drug outlets. A standardized questionnaire was administered to collect drug outlet and personnel characteristics and availability and price of anti-malarials and RDTs. RESULTS Of 181 drug outlets identified, 179 (99 %) participated in the survey. Thirteen percent were registered pharmacies, 25 % informal drug shops, 46 % general shops, 13 % homesteads and 2 % other. One hundred sixty-five (92 %) had at least one ACT type: 162 (91 %) had recommended first-line artemether-lumefantrine (AL), 22 (12 %) had recommended second-line dihydroartemisinin-piperaquine (DHA-PPQ), 85 (48 %) had sulfadoxine-pyrimethamine (SP), 60 (34 %) had any quinine (QN) formulation, and 14 (8 %) had amodiaquine (AQ) monotherapy. The mean price (range) of an adult treatment course for AL was 1.01(1.01 (0.35-4.71); DHA-PPQ was 4.39(4.39 (0.71-7.06); QN tablets were 2.24(2.24 (0.12-4.71); SP was 0.62(0.62 (0.24-2.35); AQ monotherapy was 0.42(0.42 (0.24-1.06). The mean AL price with or without the AMFm logo did not differ significantly (1.01and1.07,respectively;p = 0.45).Only17(10 1.01 and 1.07, respectively; p = 0.45). Only 17 (10 %) drug outlets had RDTs; 149 (84 %) never stocked RDTs. The mean RDT price was 0.92 ($0.24-2.35). CONCLUSIONS Most outlets never stocked RDTs; therefore, testing prior to treatment was unlikely for customers seeking treatment in the private retail sector. The recommended first-line treatment, AL, was widely available. Although SP and AQ monotherapy are not recommended for treatment, both were less expensive than AL, which might have caused preferential use by customers. Interventions that create community demand for malaria diagnostic testing prior to treatment and that increase RDT availability should be encouraged

    rac-N-{6-[Bromo­(hydr­oxy)meth­yl]-2-pyrid­yl}pivalamide

    Get PDF
    The title compound, C11H15BrN2O2, contains an amide group which is close to coplanar with the adjacent pyridine ring, the dihedral angle between the planes being 9.0 (5)°. The mol­ecular packing reveals a mutual hydrogen-bond inter­action between centrosymmetrically related hydroxyl O atoms. Further hydrogen bonding involving O—H⋯Br and N—H⋯Br inter­actions also appears to consolidate the packing

    Differences in selective pressure on dhps and dhfr drug resistant mutations in western Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding the origin and spread of mutations associated with drug resistance, especially in the context of combination therapy, will help guide strategies to halt and prevent the emergence of resistance. Unfortunately, studies have assessed these complex processes when resistance is already highly prevalent. Even further, information on the evolutionary dynamics leading to multidrug-resistant parasites is scattered and limited to areas with low or seasonal malaria transmission. This study describes the dynamics of strong selection for mutations conferring resistance against sulphadoxine-pyrimethamine (SP), a combination therapy, in western Kenya between 1992 and 1999, just before SP became first-line therapy (1999). Importantly, the study is based on longitudinal data, which allows for a comprehensive analysis that contrasts with previous cross-sectional studies carried out in other endemic regions.</p> <p>Methods</p> <p>This study used 236 blood samples collected between 1992 and 1999 in the Asembo Bay area of Kenya. Pyrosequencing was used to determine the alleles of dihydrofolate reductase (<it>dhfr</it>) and dihydropterote synthase <it>(dhps) </it>genes. Microsatellite alleles spanning 138 kb around <it>dhfr </it>and <it>dhps</it>, as well as, neutral markers spanning approximately 100 kb on chromosomes 2 and 3 were characterized.</p> <p>Results</p> <p>By 1992, the South-Asian <it>dhfr </it>triple mutant was already spreading, albeit in low frequency, in this holoendemic Kenyan population, prior to the use of SP as a first-line therapy. Additionally, <it>dhfr </it>triple mutant alleles that originated independently from the predominant Southeast Asian lineage were present in the sample set. Likewise, <it>dhps </it>double mutants were already present as early as 1992. There is evidence for soft selective sweeps of two <it>dhfr </it>mutant alleles and the possible emergence of a selective sweep of double mutant <it>dhps </it>alleles between 1992 and 1997. The longitudinal structure of the dataset allowed estimation of selection pressures on various <it>dhfr </it>and <it>dhps </it>mutants relative to each other based on a theoretical model tailored to <it>P. falciparum</it>. The data indicate that drug selection acted differently on the resistant alleles of <it>dhfr </it>and <it>dhps</it>, as evidenced by fitness differences. Thus a combination drug therapy such as SP, by itself, does not appear to select for "multidrug"-resistant parasites in areas with high recombination rate.</p> <p>Conclusions</p> <p>The complexity of these observations emphasizes the importance of population-based studies to evaluate the effects of strong drug selection on <it>Plasmodium falciparum </it>populations.</p

    A noble nexus: a phosphino-phen ligand for tethering precious metals †

    Get PDF
    Controlled formation of mixed-metal bimetallics was achieved via two derivatised 1,10-phenanthroline ligands bearing an imino- or amino-phosphine appendage at the 5-position. Selective coordination of the phen group to the [Re(CO)3Cl] core was achieved enabling precise construction of bimetallic complexes with a second rhenium centre or with gold. The mixed Ru/Au complex was similarly obtained with the imino-phosphine but access to the heterobimetallic iridium systems required prior formation of the P-bound gold complexes subsequent to the introduction of the [Ir(Ppy)2]+ fragment. The Re/Pd, Re/Pt, Ir/Pd and Ir/Pt compounds were prepared from the combination of κ-N′′,P-Pd(Pt)Cl2 and the appropriate rhenium or iridium precursors. Spectroscopic and theoretical analyses have been employed to investigate the structural and electronic impact of the second metal

    Persistently high estimates of late night, indoor exposure to malaria vectors despite high coverage of insecticide treated nets

    Get PDF
    Background It has been speculated that widespread and sustained use of insecticide treated bed nets (ITNs) for over 10 years in Asembo, western Kenya, may have selected for changes in the location (indoor versus outdoor) and time (from late night to earlier in the evening) of biting of the predominant species of human malaria vectors (Anopheles funestus, Anopheles gambiae sensu stricto, and Anopheles arabiensis). Methods Mosquitoes were collected by human landing catches over a six week period in June and July, 2011, indoors and outdoors from 17 h to 07 h, in 75 villages in Asembo, western Kenya. Collections were separated by hour of the night, and mosquitoes were identified to species and tested for sporozoite infection with Plasmodium falciparum. A subset was dissected to determine parity. Human behavior (time going to bed and rising, time spent indoors and outdoors) was quantified by cross-sectional survey. Data from past studies of a similar design and in nearby settings, but conducted before the ITN scale up commenced in the early 2000s, were compared with those from the present study. Results Of 1,960 Anopheles mosquitoes collected in 2011, 1,267 (64.6%) were morphologically identified as An. funestus, 663 (33.8%) as An. gambiae sensu lato (An. gambiae s.s. and An. arabiensis combined), and 30 (1.5%) as other anophelines. Of the 663 An. gambiae s.l. collected, 385 were successfully tested by PCR among which 235 (61.0%) were identified as An. gambiae s.s. while 150 (39.0%) were identified as An. arabiensis. Compared with data collected before the scale-up of ITNs, daily entomological inoculation rates (EIRs) were consistently lower for An. gambiae s.l. (indoor EIR = 0.432 in 1985–1988, 0.458 in 1989–1990, 0.023 in 2011), and An. arabiensis specifically (indoor EIR = 0.532 in 1989–1990, 0.039 in 2009, 0.006 in 2011) but not An. funestus (indoor EIR = 0.029 in 1985–1988, 0.147 in 1989–1990, 0.010 in 2009 and 0.103 in 2011). Sporozoite rates were lowest in 2009 but rose again in 2011. Compared with data collected before the scale-up of ITNs, An. arabiensis and An. funestus were more likely to bite outdoors and/or early in the evening (p 90% of exposure of non-ITN users to mosquito bites occurring while people were indoors in all years. The proportion of bites occurring among non-ITN users while they were asleep was ≥90% for all species except for An. arabiensis. For this species, 97% of bites occurred while people were asleep in 1989–1990 while in 2009 and 2011, 80% and 84% of bites occurred while people were asleep for those not using ITNs. Assuming ITNs prevent a theoretical maximum of 93.7% of bites, it was estimated that 64-77% of bites would have occurred among persons using nets while they were asleep in 1989–1990, while 20-52% of bites would have occurred among persons using nets while they were asleep in 2009 and 2011. Conclusions This study found no evidence to support the contention that populations of Anopheles vectors of malaria in Asembo, western Kenya, are exhibiting departures from the well-known pattern of late night, indoor biting characteristic of these typically highly anthropophilic species. While outdoor, early evening transmission likely does occur in western Kenya, the majority of transmission still occurs indoors, late at night. Therefore, malaria control interventions such as ITNs that aim to reduce indoor biting by mosquitoes should continue to be prioritized

    Unraveling the Complex Solid-State Phase Transition Behavior of 1-Iodoadamantane, a Material for Which Ostensibly Identical Crystals Undergo Different Transformation Pathways

    Get PDF
    Phase transitions in crystalline molecular solids have important implications in the fundamental understanding of materials properties and in the development of materials applications. Herein, we report the solid-state phase transition behavior of 1-iodoadamantane (1-IA) investigated using a multi-technique strategy [synchrotron powder X-ray diffraction (XRD), single-crystal XRD, solid-state NMR, and differential scanning calorimetry (DSC)], which reveals complex phase transition behavior on cooling from ambient temperature to ca. 123 K and on subsequent heating to the melting temperature (348 K). Starting from the known phase of 1-IA at ambient temperature (phase A), three low-temperature phases are identified (phases B, C, and D); the crystal structures of phases B and C are reported, together with a re-determination of the structure of phase A. Remarkably, single-crystal XRD shows that some individual crystals of phase A transform to phase B, while other crystals of phase A transform instead to phase C. Results (from powder XRD and DSC) on cooling a powder sample of phase A are fully consistent with this behavior while also revealing an additional transformation pathway from phase A to phase D. Thus, on cooling, a powder sample of phase A transforms partially to phase C (at 229 K), partially to phase D (at 226 K) and partially to phase B (at 211 K). During the cooling process, each of the phases B, C, and D is formed directly from phase A, and no transformations are observed between phases B, C, and D. On heating the resulting triphasic powder sample of phases B, C, and D from 123 K, phase B transforms to phase D (at 211 K), followed by the transformation of phase D to phase C (at 255 K), and finally, phase C transforms to phase A (at 284 K). From these observations, it is apparent that different crystals of phase A, which are ostensibly identical at the level of information revealed by XRD, must actually differ in other aspects that significantly influence their low-temperature phase transition pathways. This unusual behavior will stimulate future studies to gain deeper insights into the specific properties that control the phase transition pathways in individual crystals of this material
    corecore