32 research outputs found
The SUMER Data in the SOHO Archive
We have released an archive of all observational data of the VUV spectrometer
Solar Ultraviolet Measurements of Emitted Radiation (SUMER) on SOHO that has
been acquired until now. The operational phase started with 'first light'
observations on 27 January 1996 and will end in 2014. Future data will be added
to the archive when they become available. The archive consists of a set of raw
data (Level 0) and a set of data that are processed and calibrated to the best
knowledge we have today (Level 1). This communication describes step by step
the data acquisition and processing that has been applied in an automated
manner to build the archive. It summarizes the expertise and insights into the
scientific use of SUMER spectra that has accumulated over the years. It also
indicates possibilities for further enhancement of the data quality. With this
article we intend to convey our own understanding of the instrument performance
to the scientific community and to introduce the new, standard-FITS-format
database.Comment: 38 pages, 9 figures, accepted for publication by Solar Physic
Propriétés thermiques et morphologiques de la couronne solaire (estimation de la robustesse des diagnostics par mesure d'émission différentielle (DEM) et reconstructions tomographiques des pôles)
L'évolution de notre compréhension des propriétés de la couronne solaire dépend largement de la détermination empirique ou semi-empirique des paramètres fondamentaux du plasma, tels que le champ magnétique, la densité et la température, mais pour lesquels il n'existe pas de mesure directe. L'intégration le long de la ligne de visée complique considérablement l'interprétation des observations, du fait de la superposition de structures aux propriétés physiques différentes. Pour lever cette ambiguïté, on dispose de plusieurs outils, dont la mesure d'émission différentielle (ou DEM; Differential Emission Measure), qui permet d'obtenir la quantité de plasma en fonction de la température le long de la ligne de visée, et la tomographie, qui permet, elle, d'obtenir la distribution spatiale de l'émissivité. Le couplage de ces deux outils permet d'obtenir un diagnostic tridimensionnel en température et densité de la couronne. A l'heure actuelle, le code utilisé dans ce travail est l'un des deux seuls au monde capables de réaliser ce couplage. Cependant, ces deux méthodes requièrent un processus d'inversion, dont les difficultés intrinsèques peuvent fortement limiter l'interprétation des résultats. La méthode développée dans cette thèse s'attache à évaluer la robustesse des diagnostics spectroscopiques par DEM, en proposant une nouvelle technique de caractérisation tenant compte des différentes sources d'incertitudes mises en jeu. En utilisant une approche probabiliste, cette technique permet d'étalonner a priori le problème d'inversion, et ainsi d'étudier son comportement et ses limitations dans le cadre de modèles simples. L'avantage de ce type d'approche est sa capacité à fournir des barres d'erreurs associées aux DEMs reconstruites à partir de données réelles. La technique développée a d'abord été appliquée à l'imageur SDO/AIA dans le cas de modèles de DEMs simples mais capables de représenter une grande variété de conditions physiques au sein de la couronne. Si l'inversion de plasmas proches de l'isothermalité apparaît robuste, nos résultats montrent qu'il n'en va pas de même pour les plasmas largement distribués en température, pour lesquelles les DEMs reconstruites sont à la fois moins précises mais aussi biaisées vers des solutions secondaires particulières. La technique a ensuite été appliquée au spectromètre Hinode/EIS, en utilisant un modèle de DEM représentant la distribution en loi de puissance des DEMs des régions actives, dont la pente permet de fournir des contraintes relatives à la fréquence des événements de chauffage coronal. Nos résultats montrent que les sources d'incertitudes sont à l'heure actuelle trop élevées pour permettre une mesure exploitable de la fréquence. La dernière partie est consacrée aux reconstructions tridimensionnelles obtenues par couplage tomographie/DEM, en s'intéressant aux structures polaires. Premières reconstructions réalisées avec AIA, nos résultats permettent d'étudier l'évolution en température et densité en fonction de l'altitude, montrant la présence de plumes polaires plus chaudes et denses que leur environnement.Progress in our understanding of the solar corona properties is highly dependant of the emipirical or semi-empirical determination of the plasma fundamental parameters, such as magnetic field, density and temperature. However, there is no direct measurements of such quantities; the integration along the line of sight considerably complicates the interpretations of the observations, due to the superimposition of structures with different properties. To avoid this ambiguity, there exist several tools, including the Differential Emission Measure (DEM) and the tomography reconstruction technique. The former provides the quantity of emitting material as a function of the temperature, whereas the latter is able to reconstruct the three dimensional distribution of the coronal emissivity. Coupling these two techniques leads to a three dimensional diagnostic of the temperature and density. The inversion code used in this work is currently one of the two codes in the world able to perform this coupling. The method described in this work has been developed in order to estimate the robustness of the spectroscopic diagnostics using the DEM formalism, using a new characterisation method taken into account the different uncertainty sources involved in the inversion process. Using a probabilistic approach, this technique is able to calibrate a priori the DEM inversion problem and thus allows to study the inversion behavior and limitations in the context of simple DEMs models. The advantage of this method is its ability to provide confidence level on the reconstructed DEMs computed from real data. First applied to the SDO/AIA (Atmospheric Imaging Assembly) imager in the case of simple models able to represent a variety of plasma conditions, our results show that DEM inversion of isothermal or near-isothermal plasmas is robust, whereas the multithermal solutions are less accurate but also biased to secondary solutions. We also applied the method to the Hinode/EIS (EUV Imaging Spectrometer) spectrometer, using a power law DEM, typical of active regions DEM, from which the slope provides important constraints related to the coronal heating frequency. Our results point out that the different uncertainty sources are currently too high to allow exploitable measurements of this frequency. The last part is dedicated to the three-dimensional reconstructions obtained by coupling tomography and DEM tools, focusing on polar structures. First reconstructions obtained using AIA data, our results allow to study the evolution of the temperature and density as a function of altitude, showing polar plumes denser and hotter than their surrondings.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF
Comprehensive Determination of the Hinode/EIS Roll Angle
We present a new coalignment method for the EUV Imaging Spectrometer (EIS) on
board the Hinode spacecraft. In addition to the pointing offset and spacecraft
jitter, this method determines the roll angle of the instrument, which has
never been systematically measured, and is therefore usually not corrected. The
optimal pointing for EIS is computed by maximizing the cross-correlations of
the Fe XII 195.119 \r{A} line with images from the 193 \r{A} band of the
Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory
(SDO). By coaligning 3336 rasters with high signal-to-noise ratio, we estimate
the rotation angle between EIS and AIA and explore the distribution of its
values. We report an average value of (-0.387 0.007)\deg. We also provide
a software implementation of this method that can be used to coalign any EIS
raster.Comment: Accepted for publication in Solar Physics, 11 pages, 7 figure
On the spectroscopic detection of periodic plasma flows in loops undergoing thermal non-equilibrium
Context: Long-period intensity pulsations were recently detected in the EUV
emission of coronal loops, and have been attributed to cycles of plasma
evaporation and condensation driven by thermal non-equilibrium (TNE). Numerical
simulations that reproduce this phenomenon also predict the formation of
periodic flows of plasma at coronal temperatures along some of the pulsating
loops. Aims: In this paper, we aim at detecting these predicted flows of
coronal-temperature plasma in pulsating loops. Methods: To this end, we use
time series of spatially resolved spectra from the EUV imaging spectrometer
(EIS) onboard Hinode, and track the evolution of the Doppler velocity in loops
in which intensity pulsations have previously been detected in images of
SDO/AIA. Results: We measure signatures of flows that are compatible with the
simulations, but only in a fraction of the observed events. We demonstrate that
this low detection rate can be explained by line of sight ambiguities, combined
with instrumental limitations such as low signal to noise ratio or insufficient
cadence.Comment: Accepted for publication in A&A. 16 pages, 16 figure
Microscale Structures on the Quiet Sun and Coronal Heating
We present some results concerning transient brightenings on the quiet Sun, based on data from the Extreme-Ultraviolet Imaging Telescope on board the Solar and Heliospheric Observatory. Histograms of intensity are found to be well fitted by χ2 distributions for small values of the intensity, while at high intensities power-law distributions are always observed. Also, the emission presents the same statistical properties when the resolution is downgraded by local averaging; i.e., it appears to be self-similar down to the resolution scale of the instruments. These properties are characteristic of the emission from a forced turbulent system whose dissipation scale is much smaller than the pixel dimension. On the basis of the data presented as well as other published results and our present theoretical understanding of MHD turbulence, we discuss the realism of the nanoflare scenario of coronal heating
Détection d oscillations de longues périodes dans la couronne solaire (analyse statistique des données EIT/SOHO à 19.5 nm pendant le cycle solaire 23)
Le but de l étude conduite durant ma thèse est de faire une détection systématique de ces oscillations de longue période en intensité, sans a priori sur un type de structure particulier de la couronne. J ai pour cela analysé les données de l imageur extrême UV EIT à bord du satellite SOHO, entre janvier 1997 et septembre 2008, ce qui m a permis de couvrir pratiquement la totalité du cycle solaire 23. Plus de 400 oscillations de période variant entre 3.4 et 13.6h ont ainsi pu être mises en évidence, avec une période plus fréquemment observée de 6-7h. Ces oscillations sont principalement localisées dans des régions actives, dans des boucles coronales et durent plus de 10h. Après une analyse des sources instrumentales pouvant être à l origine de telles oscillations, nous avons conclu qu elles étaient bien d origine solaire. Dans ce manuscrit, plusieurs hypothèses sont mises en avant pour expliquer le comportement de ces oscillations. Nous suggérons notamment que les variations périodiques d intensité pourraient être le résultat d un cycle de condensation du plasma coronal dans les boucles solaires.The aim of the statistical study conducted during my PhD is to perform a systematic detection of ultra-long period intensity oscillations without a priori on the type of coronal structures using EIT data on board SOHO at 19.5 nm from January 1997 to September 2008, i.e almost the entire solar cycle 23. We detected more than 400 oscillations whose periods range between 3.4 and 13.6 h with a more frequent period of 6-7h. Most of the oscillations are localized in active regions, in coronal loops and last several ten hours or so. We performed a comprehensive analysis of the possible instrumental sources and conclude that the observed signal is of solar origin. We discuss various hypotheses which could explain the behavior of the oscillations found. In particular, we suggest that the periodical intensity variations observed may be the result of a condensation cycle of the coronal plasma in loops.ORSAY-PARIS 11-BU Sciences (914712101) / SudocSudocFranceF