7 research outputs found

    Bacterial community and filamentous population of industrial wastewater treatment plants in Belgium

    No full text
    Abstract: The discharge of industrial water requires the removal of its pollutants, where biological wastewater treatment plants (WWTPs) are the most used systems. Biological WWTPs make use of activated sludge (AS), where bacteria are responsible for the removal of pollutants. However, our knowledge of the microbial communities of industrial plants is limited. Understanding the microbial population is essential to provide solutions to industrial problems such as bulking. The aim of this study was to identify at a high taxonomic resolution the bacterial population of 29 industrial WWTPs using 16S rRNA amplicon sequencing. Our results revealed that the main functional groups were dominated by Thauera and Zoogloea within denitrifiers, Dechloromonas in phosphate-accumulating organisms, and Defluviicoccus in glycogen-accumulating organisms. The activated sludge characterization indicated that 59% of the industrial plants suffered from bulking sludge, with DSVI values of up to 448 mL g-1. From the bulking cases, 72% corresponded to filamentous bulking with Thiothrix as the most abundant filament; meanwhile, the other 28% corresponded to viscous bulking sludge in which Zoogloea was the most abundant genus. Furthermore, the bacterial population did not share a core of taxa across all industrial plants. However, 20 genera were present in at least 50% of the plants comprising the general core, including Thauera, Ca. Competibacter, and several undescribed microorganisms. Moreover, statistical analysis revealed that wastewater salinity strongly affected the microbial richness of the industrial plants. The bacterial population across industrial plants differed considerably from each other, resulting in unique microbial communities that are attributed to the specificity of their wastewaters.Key points center dot The general core taxa of industrial plants were mostly made up of undescribed bacterial genera.center dot Filamentous bacteria constituted on average 4.1% read abundance of the industrial WWTPs.center dot Viscous bulking remains a significant type of bulking within industrial WWTPs.Key points center dot The general core taxa of industrial plants were mostly made up of undescribed bacterial genera.center dot Filamentous bacteria constituted on average 4.1% read abundance of the industrial WWTPs.center dot Viscous bulking remains a significant type of bulking within industrial WWTPs.Key points center dot The general core taxa of industrial plants were mostly made up of undescribed bacterial genera.center dot Filamentous bacteria constituted on average 4.1% read abundance of the industrial WWTPs.center dot Viscous bulking remains a significant type of bulking within industrial WWTPs

    Implementation of an anaerobic selector step for the densification of activated sludge treating high-salinity petrochemical wastewater

    No full text
    Sludge bulking is a common challenge in industrial biological wastewater treatment. Leading to difficulties such as bad sludge settling and washout, which is a problem also encountered in the petrochemical industry. Anaerobic feeding strategies can be used to induce the growth of storage-capable organisms, such as glycogen-accumulating organisms (GAO), leading to denser sludge flocs and better settling. In this study, the implementation of an anaerobic feeding strategy was investigated for high-salinity petrochemical wastewater (±35 g salts·L−1), using a sequencing batch reactor. Influent, effluent and sludge characteristics were analyzed throughout the operational period, which can be divided into three stages: I (normal operation), II (increased influent volume) and III (longer anaerobic mixing). Good effluent quality was observed during all stages with effluent chemical oxygen demand (COD) < 100 mgO2·L−1 and removal efficiencies of 95%. After 140 days, the sludge volume index decreased below 100 mL·g−1 reaching the threshold of good settling sludge. Sludge morphology clearly improved, with dense sludge flocs and less filaments being present. A maximum anaerobic dissolved oxygen carbon (DOC) uptake was achieved on day 80 with 74% during stage III. 16S rRNA amplicon sequencing showed the presence of GAOs, with increasing relative read abundance over time from 1 to 3.5%. HIGHLIGHTS Dense and compact sludge flocs were achieved under high-saline conditions; Filamentous organisms were suppressed in the system, favoring the growth of glycogen-accumulating organisms; Settling characteristics of the sludge were improved to the point of the sludge being characterized as well-settling

    Performance of an aerobic granular sludge membrane filtration in a full-scale industrial plant

    No full text
    This study quantifies the hydraulic performance of a pilot-scale ultrafiltration system integrated into a full-scale industrial aerobic granular sludge (AGS) plant. The treatment plant consisted of parallel AGS reactors, Bio1 and Bio2, with similar initial granular sludge properties. During the 3-month filtration test, a chemical oxygen demand (COD) overloading episode took place, affecting the settling properties, morphology, and microbial community composition in both reactors. The impact on Bio2 was more severe than on Bio1, with higher maximal sludge volume index values, a complete loss of granulation, and the excessive appearance of filamentous bacteria extending from the flocs. The membrane filtration properties of both sludges, with these different sludge qualities, were compared. The permeability in Bio1 varied between 190.8 ± 23.3 and 158.9 ± 19.2 L·m−2·h−1·bar−1, which was 50% higher than in Bio2 (89.9 ± 5.8 L·m−2·h−1·bar−1). A lab-scale filtration experiment using a flux-step protocol showed a lower fouling rate for Bio1 in comparison with Bio2. The membrane resistance due to pore blocking was three times higher in Bio2 than in Bio1. This study shows the positive impact of granular biomass on the long-term membrane filtration properties and stresses the importance of granular sludge stability during reactor operation. HIGHLIGHTS Well-filterable sludge was obtained by applying a feast (anaerobic)/famine (aerobic) feeding strategy.; The better the granules' properties, the lower the fouling rate and permeability loss.
    corecore