2 research outputs found

    MGL S3 Chimeric Enzyme Drives Apoptotic Death of EGFR-Dependent Cancer Cells through ERK Downregulation

    No full text
    Methionine dependence of malignant cells is one of the cancer hallmarks. It is well described that methionine deprivation drives cancer cells death, both in vitro and in vivo. Methionine gamma-lyase (MGL) isolated from different species or obtained by genetic engineering can be used for effective methionine depletion. In this work, we show that MGL S3, a genetically engineered protein comprised of MGL from Clostridium sporogenesis fused to epidermal growth factor (EGF)-like peptide, reduces, in vitro, the number of cancer cells of four different origins—neuroblastoma, lung, breast, and colon cancer. We reveal that MGL S3 is more toxic for neuroblastoma SH-SY5Y and lung cancer H1299 cells compared to MGL tetani, and causes cell death by the induction of apoptosis. In addition, the observed death of cells treated with MGL S3 is accompanied by the prominent downregulation of ERK activity. By the analysis of transcriptomic data of more than 1500 cancer cell lines and patient samples, we show that the high expression of four genes from the methionine metabolism pathway (AHCY, CBS, DNMT3A, and MTAP) is associated with poor prognosis for breast cancer and neuroblastoma patients. Additionally, cells of these origins are characterized by a high correlation between EGFR dependency and DNMT3A/CBS expression. Finally, we demonstrate the ability of MGL S3 to enhance the sensitivity of H1299 cells to EGFR inhibition with gefitinib

    Selective Inhibition of HDAC Class I Sensitizes Leukemia and Neuroblastoma Cells to Anticancer Drugs

    No full text
    The acquired resistance of neuroblastoma (NB) and leukemia cells to anticancer therapy remains the major challenge in the treatment of patients with these diseases. Although targeted therapy, such as receptor tyrosine kinase (RTK) inhibitors, has been introduced into clinical practice, its efficacy is limited to patients harboring mutant kinases. Through the analysis of transcriptomic data of 701 leukemia and NB patient samples and cell lines, we revealed that the expression of RTK, such as KIT, FLT3, AXL, FGFR3, and NTRK1, is linked with HDAC class I. Although HDAC inhibitors have antitumor activity, they also have high whole-body toxicity. We developed a novel belinostat derivative named hydrazostat, which targets HDAC class I with limited off-target effects. We compared the toxicity of these drugs within the panel of leukemia and NB cell lines. Next, we revealed that HDAC inhibition with hydrazostat reactivates NTRK1, FGFR3, ROR2, KIT, and FLT3 expression. Based on this finding, we tested the efficacy of hydrazostat in combination with RTK inhibitor imatinib. Additionally, we show the ability of hydrazostat to enhance venetoclax-induced apoptosis. Thus, we reveal the connection between HDACs and RTK and describe a useful strategy to overcome the complications of single-agent therapies
    corecore