12 research outputs found
Dendritic polyglycerol nanoparticles show charge dependent bio-distribution in early human placental explants and reduce hCG secretion
A thorough understanding of nanoparticle bio-distribution at the feto-maternal
interface will be a prerequisite for their diagnostic or therapeutic
application in women of childbearing age and for teratologic risk assessment.
Therefore, the tissue interaction of biocompatible dendritic polyglycerol
nanoparticles (dPG-NPs) with first- trimester human placental explants were
analyzed and compared to less sophisticated trophoblast-cell based models.
First-trimester human placental explants, BeWo cells and primary trophoblast
cells from human term placenta were exposed to fluorescence labeled, ∼5 nm
dPG-NPs, with differently charged surfaces, at concentrations of 1 µM and 10
nM, for 6 and 24 h. Accumulation of dPGs was visualized by fluorescence
microscopy. To assess the impact of dPG-NP on trophoblast integrity and
endocrine function, LDH, and hCG releases were measured. A dose- and charge-
dependent accumulation of dPG-NPs was observed at the early placental barrier
and in cell lines, with positive dPG-NP-surface causing deposits even in the
mesenchymal core of the placental villi. No signs of plasma membrane damage
could be detected. After 24 h we observed a significant reduction of hCG
secretion in placental explants, without significant changes in trophoblast
apoptosis, at low concentrations of charged dPG-NPs. In conclusion, dPG-NP’s
surface charge substantially influences their bio-distribution at the feto-
maternal interface, with positive charge facilitating trans-trophoblast
passage, and in contrast to more artificial models, the first-trimester
placental explant culture model reveals potentially hazardous influences of
charged dPG-NPs on early placental physiology
Artificial High Density Lipoprotein Nanoparticles in Cardiovascular Research
Lipoproteins are endogenous nanoparticles which are the major transporter of fats and cholesterol in the human body. They play a key role in the regulatory mechanisms of cardiovascular events. Lipoproteins can be modified and manipulated to act as drug delivery systems or nanocarriers for contrast agents. In particular, high density lipoproteins (HDL), which are the smallest class of lipoproteins, can be synthetically engineered either as nascent HDL nanodiscs or spherical HDL nanoparticles. Reconstituted HDL (rHDL) particles are formed by self-assembly of various lipids and apolipoprotein AI (apo-AI). A variety of substances including drugs, nucleic acids, signal emitting molecules, or dyes can be loaded, making them efficient nanocarriers for therapeutic applications or medical diagnostics. This review provides an overview about synthesis techniques, physicochemical properties of rHDL nanoparticles, and structural determinants for rHDL function. We discuss recent developments utilizing either apo-AI or apo-AI mimetic peptides for the design of pharmaceutical rHDL formulations. Advantages, limitations, challenges, and prospects for clinical translation are evaluated with a special focus on promising strategies for the treatment and diagnosis of atherosclerosis and cardiovascular diseases
Archaeosomes for Oral Drug Delivery: From Continuous Microfluidics Production to Powdered Formulations
Archaeosomes were manufactured from natural archaeal lipids by a microfluidics-assisted single-step production method utilizing a mixture of di- and tetraether lipids extracted from Sulfolobus acidocaldarius. The primary aim of this study was to investigate the exceptional stability of archaeosomes as potential carriers for oral drug delivery, with a focus on powdered formulations. The archaeosomes were negatively charged with a size of approximately 100 nm and a low polydispersity index. To assess their suitability for oral delivery, the archaeosomes were loaded with two model drugs: calcein, a fluorescent compound, and insulin, a peptide hormone. The archaeosomes demonstrated high stability in simulated intestinal fluids, with only 5% of the encapsulated compounds being released after 24 h, regardless of the presence of degrading enzymes or extremely acidic pH values such as those found in the stomach. In a co-culture cell model system mimicking the intestinal barrier, the archaeosomes showed strong adhesion to the cell membranes, facilitating a slow release of contents. The archaeosomes were loaded with insulin in a single-step procedure achieving an encapsulation efficiency of approximately 35%. These particles have been exposed to extreme manufacturing temperatures during freeze-drying and spray-drying processes, demonstrating remarkable resilience under these harsh conditions. The fabrication of stable dry powder formulations of archaeosomes represents a promising advancement toward the development of solid dosage forms for oral delivery of biological drugs
Dynamics of Apolipoprotein B-100 in Interaction with Detergent Probed by Incoherent Neutron Scattering
International audienc
High Hydrostatic Pressure Induces a Lipid Phase Transition and Molecular Rearrangements in Low-Density Lipoprotein Nanoparticles
International audienc
Softness of Atherogenic Lipoproteins: A Comparison of Very Low Density Lipoprotein (VLDL) and Low Density Lipoprotein (LDL) Using Elastic Incoherent Neutron Scattering (EINS)
Apolipoprotein B100 (apoB100)-containing plasma lipoproteins (LDL and VLDL) supply tissues and cells with cholesterol and fat. During lipolytic conversion from VLDL to LDL the size and chemical composition of the particles change, but the apoB100 molecule remains bound to the lipids and regulates the receptor mediated uptake. The molecular physical parameters which control lipoprotein remodeling and enable particle stabilization by apoB100 are largely unknown. Here, we have compared the molecular dynamics and elasticities of VLDL and LDL derived by elastic neutron scattering temperature scans. We have determined thermal motions, dynamical transitions, and molecular fluctuations, which reflect the temperature-dependent motional coupling between lipid and protein. Our results revealed that lipoprotein particles are extremely soft and flexible. We found substantial differences in the molecular resiliences of lipoproteins, especially at higher temperatures. These discrepancies not only can be explained in terms of lipid composition and mobility but also suggest that apoB100 displays different dynamics dependent on the lipoprotein it is bound to. Hence, we suppose that the inherent conformational flexibility of apoB100 permits particle stabilization upon lipid exchange, whereas the dynamic coupling between protein and lipids might be a key determinant for lipoprotein conversion and atherogenicity
Peptides at the Interface: Self-Assembly of Amphiphilic Designer Peptides and Their Membrane Interaction Propensity
Self-assembling
amphiphilic designer peptides have been successfully
applied as nanomaterials in biomedical applications. Understanding
molecular interactions at the peptide–membrane interface is
crucial, since interactions at this site often determine (in)compatibility.
The present study aims to elucidate how model membrane systems of
different complexity (in particular single-component phospholipid
bilayers and lipoproteins) respond to the presence of amphiphilic
designer peptides. We focused on two short anionic peptides, V<sub>4</sub>WD<sub>2</sub> and A<sub>6</sub>YD, which are structurally
similar but showed a different self-assembly behavior. A<sub>6</sub>YD self-assembled into high aspect ratio nanofibers at low peptide
concentrations, as evidenced by synchrotron small-angle X-ray scattering
and electron microscopy. These supramolecular assemblies coexisted
with membranes without remarkable interference. In contrast, V<sub>4</sub>WD<sub>2</sub> formed only loosely associated assemblies over
a large concentration regime, and the peptide promoted concentration-dependent
disorder on the membrane arrangement. Perturbation effects were observed
on both membrane systems although most likely induced by different
modes of action. These results suggest that membrane activity critically
depends on the peptide’s inherent ability to form highly cohesive
supramolecular structures
Thiolated Chitosan Conjugated Liposomes for Oral Delivery of Selenium Nanoparticles
This study aimed to design a hybrid oral liposomal delivery system for selenium nanoparticles (Lip-SeNPs) to improve the bioavailability of selenium. Thiolated chitosan, a multifunctional polymer with mucoadhesive properties, was used for surface functionalization of Lip-SeNPs. Selenium nanoparticle (SeNP)-loaded liposomes were manufactured by a single step microfluidics-assisted chemical reduction and assembling process. Subsequently, chitosan-N-acetylcysteine was covalently conjugated to the preformed Lip-SeNPs. The Lip-SeNPs were characterized in terms of composition, morphology, size, zeta potential, lipid organization, loading efficiency and radical scavenging activity. A co-culture system (Caco-2:HT29-MTX) that integrates mucus secreting and enterocyte-like cell types was used as a model of the human intestinal epithelium to determine adsorption, mucus penetration, release and transport properties of Lip-SeNPs in vitro. Thiolated Lip-SeNPs were positively charged with an average size of about 250 nm. Thiolated Lip-SeNPs tightly adhered to the mucus layer without penetrating the enterocytes. This finding was consistent with ex vivo adsorption studies using freshly excised porcine small intestinal tissues. Due to the improved mucoadhesion and retention in a simulated microenvironment of the small intestine, thiolated Lip-SeNPs might be a promising tool for oral selenium delivery
Thiolated Chitosan Conjugated Liposomes for Oral Delivery of Selenium Nanoparticles
This study aimed to design a hybrid oral liposomal delivery system for selenium nanoparticles (Lip-SeNPs) to improve the bioavailability of selenium. Thiolated chitosan, a multifunctional polymer with mucoadhesive properties, was used for surface functionalization of Lip-SeNPs. Selenium nanoparticle (SeNP)-loaded liposomes were manufactured by a single step microfluidics-assisted chemical reduction and assembling process. Subsequently, chitosan-N-acetylcysteine was covalently conjugated to the preformed Lip-SeNPs. The Lip-SeNPs were characterized in terms of composition, morphology, size, zeta potential, lipid organization, loading efficiency and radical scavenging activity. A co-culture system (Caco-2:HT29-MTX) that integrates mucus secreting and enterocyte-like cell types was used as a model of the human intestinal epithelium to determine adsorption, mucus penetration, release and transport properties of Lip-SeNPs in vitro. Thiolated Lip-SeNPs were positively charged with an average size of about 250 nm. Thiolated Lip-SeNPs tightly adhered to the mucus layer without penetrating the enterocytes. This finding was consistent with ex vivo adsorption studies using freshly excised porcine small intestinal tissues. Due to the improved mucoadhesion and retention in a simulated microenvironment of the small intestine, thiolated Lip-SeNPs might be a promising tool for oral selenium delivery