5 research outputs found
The close relationship between the Golgi trafficking machinery and protein glycosylation
La glicosilazione è la più comune modifica post-traduzionale delle proteine; media la loro corretta piegatura e stabilità , nonché il loro trasporto attraverso il trasporto secretorio. I cambiamenti nei glicani legati all'N e all'O sono stati associati a molteplici condizioni patologiche tra cui disturbi congeniti della glicosilazione, malattie infiammatorie e cancro. La glicosilazione della glicoproteina al Golgi coinvolge l'azione coordinata di centinaia di glicosiltransferasi e glicosidasi, che vengono mantenute nella posizione corretta attraverso il traffico di vescicole retrograde tra le cisterne di Golgi. In questa recensione, descriviamo il macchinario molecolare coinvolto nel traffico di vescicole e nel tethering presso l'apparato di Golgi e gli effetti delle mutazioni nel contesto della biosintesi dei glicani e delle malattie umane.Glycosylation is the most common post-translational modification of proteins; it mediates their correct folding and stability, as well as their transport through the secretory transport. Changes in N- and O-linked glycans have been associated with multiple pathological conditions including congenital disorders of glycosylation, inflammatory diseases and cancer. Glycoprotein glycosylation at the Golgi involves the coordinated action of hundreds of glycosyltransferases and glycosidases, which are maintained at the correct location through retrograde vesicle trafficking between Golgi cisternae. In this review, we describe the molecular machinery involved in vesicle trafficking and tethering at the Golgi apparatus and the effects of mutations in the context of glycan biosynthesis and human diseases
Oncogenic roles of GOLPH3 in the physiopathology of cancer
Golgi phosphoprotein 3 (GOLPH3), un effettore del fosfatidilinositolo 4-fosfato [PI (4) P] al Golgi, è necessaria per il mantenimento della struttura del nastro del Golgi, il traffico di vescicole e la glicosilazione del Golgi. GOLPH3 è stato convalidato come oncoproteina combinando la genomica integrativa con l'analisi clinopatologiche e funzionali. È spesso amplificato in diversi tipi di tumori solidi tra cui melanoma, cancro ai polmoni, cancro al seno, glioma e cancro del colon-retto. La sovraespressione di GOLPH3 è correlata a una prognosi infausta in più tipi di tumore, compreso il 52% dei tumori al seno e dal 41% al 53% del glioblastoma. I ruoli di GOLPH3 nella tumorigenesi possono essere correlati a diverse attività cellulari, tra cui: (i) regolazione del traffico dal Golgi alla membrana plasmatica e contributo a fenotipi secretori maligni; (ii) controllare l'internalizzazione e il riciclaggio di molecole di segnalazione chiave o aumentare la glicosilazione delle glicoproteine ​​rilevanti per il cancro; e (iii) influenzare la risposta al danno al DNA e il mantenimento della stabilità genomica. Qui riassumiamo le attuali conoscenze sui percorsi oncogeni che coinvolgono GOLPH3 nel cancro umano, l'influenza di GOLPH3 sul metabolismo del tumore e sullo stroma circostante e il suo possibile ruolo nella formazione di metastasi tumorali.Golgi phosphoprotein 3 (GOLPH3), a Phosphatidylinositol 4-Phosphate [PI(4)P] effector at the Golgi, is required for Golgi ribbon structure maintenance, vesicle trafficking and Golgi glycosylation. GOLPH3 has been validated as an oncoprotein through combining integrative genomics with clinopathological and functional analyses. It is frequently amplified in several solid tumor types including melanoma, lung cancer, breast cancer, glioma, and colorectal cancer. Overexpression of GOLPH3 correlates with poor prognosis in multiple tumor types including 52% of breast cancers and 41% to 53% of glioblastoma. Roles of GOLPH3 in tumorigenesis may correlate with several cellular activities including: (i) regulating Golgi-to-plasma membrane trafficking and contributing to malignant secretory phenotypes; (ii) controlling the internalization and recycling of key signaling molecules or increasing the glycosylation of cancer relevant glycoproteins; and (iii) influencing the DNA damage response and maintenance of genomic stability. Here we summarize current knowledge on the oncogenic pathways involving GOLPH3 in human cancer, GOLPH3 influence on tumor metabolism and surrounding stroma, and its possible role in tumor metastasis formation
COG7 deficiency in Drosophila generates multifaceted developmental, behavioral and protein glycosylation phenotypes
Congenital disorders of glycosylation (CDG) comprise a family of human multisystemic diseases caused by recessive mutations in genes required for protein N-glycosylation. More than 100 distinct forms of CDGs have been identified and most of them cause severe neurological impairment. The Conserved Oligomeric Golgi (COG) complexmediates tethering of vesicles carrying glycosylation enzymes across the Golgi cisternae. Mutations affecting human COG1, COG2 and COG4-COG8 cause monogenic forms of inherited, autosomal recessive CDGs.We have generated a Drosophila COG7-CDG model that closely parallels the pathological characteristics of COG7-CDG patients, including pronounced neuromotor defects associated with altered N-glycome profiles. Consistent with these alterations, larval neuromuscular junctions of Cog7 mutants exhibit a significant reduction in bouton numbers. We demonstrate that the COG complex cooperates with Rab1 and Golgi phosphoprotein 3 to regulate Golgi trafficking and that overexpression of Rab1 can rescue the cytokinesis and locomotor defects associated with loss of Cog7. Our results suggest that the Drosophila COG7-CDG model can be used to test novel potential therapeutic strategies by modulating trafficking pathways
A novel coordinated function of myosin II with GOLPH3 controls centralspindlin localization during cytokinesis in drosophila
Nella citochinesi delle cellule animali, l'interazione della miosina II non muscolare (NMII) con l'actina F fornisce la forza dominante per dividere la cellula madre in due figlie. Qui dimostriamo che celibe (cbe) è un allele missenso di zipper, che codifica per la catena pesante della miosina in Drosophila. La mutazione di cbe altera il legame della proteina Zipper con la catena leggera di spaghetti squash (Sqh). Negli spermatociti in divisione dai maschi cbe, Sqh non riesce a concentrarsi nella corteccia equatoriale, determinando anelli sottili di actomiosina che non sono in grado di restringersi. Mostriamo che la mutazione cbe altera la localizzazione di Golgi phosphoprotein 3 (GOLPH3, anche conosciuta come Sauron) che lega il fosfatidilinositolo 4-fosfato [PI (4) P] e il mantenimento della centralspindlina al cell equator durante la telofase. I nostri risultati dimostrano ulteriormente che la proteina GOLPH3 si associa a Sqh e si lega direttamente alla subunità centralspindlin Pavarotti. Proponiamo che durante la citochinesi, la dipendenza reciproca tra miosina e PI (4) P-GOLPH3 regola la stabilizzazione centralspindlin presso la membrana plasmatica invaginante e l'assemblaggio dell'anello contrattile.In animal cell cytokinesis, interaction of non-muscle myosin II (NMII) with F-actin provides the dominant force for pinching the mother cell into two daughters. Here we demonstrate that celibe (cbe) is a missense allele of zipper, which encodes the Drosophila Myosin heavy chain. Mutation of cbe impairs binding of Zipper protein to the regulatory light chain Spaghetti squash (Sqh). In dividing spermatocytes from cbe males, Sqh fails to concentrate at the equatorial cortex, resulting in thin actomyosin rings that are unable to constrict. We show that cbe mutation impairs localization of the phosphatidylinositol 4-phosphate [PI(4)P]-binding protein Golgi phosphoprotein 3 (GOLPH3, also known as Sauron) and maintenance of centralspindlin at the cell equator of telophase cells. Our results further demonstrate that GOLPH3 protein associates with Sqh and directly binds the centralspindlin subunit Pavarotti. We propose that during cytokinesis, the reciprocal dependence between Myosin and PI(4)P-GOLPH3 regulates centralspindlin stabilization at the invaginating plasma membrane and contractile ring assembly
Modeling congenital disorders of N-linked glycoprotein glycosylation in Drosophila melanogaster
La glicosilazione delle proteine, l'aggiunta enzimatica di glicani N-legati o O-legati alle proteine, svolge funzioni cruciali nelle cellule animali e richiede l'azione di glicosiltransferasi, glicosidasi e trasportatori nucleotidi-zucchero, localizzati nel reticolo endoplasmatico e nell'apparato di Golgi. I disturbi congeniti della glicosilazione (CDG) comprendono una famiglia di malattie multisistemiche causate da mutazioni nei geni che codificano per proteine ​​coinvolte nelle vie di glicosilazione. Le CDG sono classificati in due grandi gruppi. le CDG di tipo I influenzano la sintesi del precursore Glc3Man9GlcNac2 legato al dolicolo della glicosilazione legata all'N o il suo trasferimento alle proteine ​​accettrici. Le malattie CDG di tipo II (CDG-II) compromettono o il taglio dell'oligosaccaride legato all'N, l'aggiunta di glicani terminali o la biosintesi degli oligosaccaridi legati all'O, che si verificano nell'apparato di Golgi. Finora, sono note oltre 100 forme distinte di CDG, la maggior parte delle quali caratterizzata da difetti neurologici tra cui ritardo mentale, convulsioni e ipotonia. Tuttavia, non è chiaro in che modo la glicosilazione difettosa causi la patologia delle CDG. Questo problema può essere affrontato solo sviluppando modelli animali di CDG specifici. Drosophila melanogaster sta emergendo come un organismo altamente adatto per analizzare le funzioni dipendenti dai glicani nel sistema nervoso centrale (SNC) e il coinvolgimento della N-glicosilazione nelle neuropatologie. In questa recensione illustriamo un lavoro recente che evidenzia i vantaggi genetici e neurobiologici offerti da D. melanogaster per la dissezione delle vie di glicosilazione e la modellazione della fisiopatologia del CDG.Protein glycosylation, the enzymatic addition of N-linked or O-linked glycans to proteins, serves crucial functions in animal cells and requires the action of glycosyltransferases, glycosidases and nucleotide-sugar transporters, localized in the endoplasmic reticulum and Golgi apparatus. Congenital Disorders of Glycosylation (CDGs) comprise a family of multisystemic diseases caused by mutations in genes encoding proteins involved in glycosylation pathways. CDGs are classified into two large groups. Type I CDGs affect the synthesis of the dolichol-linked Glc3Man9GlcNac2 precursor of N-linked glycosylation or its transfer to acceptor proteins. Type II CDG (CDG-II) diseases impair either the trimming of the N-linked oligosaccharide, the addition of terminal glycans or the biosynthesis of O-linked oligosaccharides, which occur in the Golgi apparatus. So far, over 100 distinct forms of CDGs are known, with the majority of them characterized by neurological defects including mental retardation, seizures and hypotonia. Yet, it is unclear how defective glycosylation causes the pathology of CDGs. This issue can be only addressed by developing animal models of specific CDGs. Drosophila melanogaster is emerging as a highly suitable organism for analyzing glycan-dependent functions in the central nervous system (CNS) and the involvement of N-glycosylation in neuropathologies. In this review we illustrate recent work that highlights the genetic and neurobiologic advantages offered by D. melanogaster for dissecting glycosylation pathways and modeling CDG pathophysiology