14 research outputs found

    Interaction Network among Escherichia coli Membrane Proteins Involved in Cell Division as Revealed by Bacterial Two-Hybrid Analysis

    No full text
    Formation of the Escherichia coli division septum is catalyzed by a number of essential proteins (named Fts) that assemble into a ring-like structure at the future division site. Several of these Fts proteins are intrinsic transmembrane proteins whose functions are largely unknown. Although these proteins appear to be recruited to the division site in a hierarchical order, the molecular interactions underlying the assembly of the cell division machinery remain mostly unspecified. In the present study, we used a bacterial two-hybrid system based on interaction-mediated reconstitution of a cyclic AMP (cAMP) signaling cascade to unravel the molecular basis of septum assembly by analyzing the protein interaction network among E. coli cell division proteins. Our results indicate that the Fts proteins are connected to one another through multiple interactions. A deletion mapping analysis carried out with two of these proteins, FtsQ and FtsI, revealed that different regions of the polypeptides are involved in their associations with their partners. Furthermore, we showed that the association between two Fts hybrid proteins could be modulated by the coexpression of a third Fts partner. Altogether, these data suggest that the cell division machinery assembly is driven by the cooperative association among the different Fts proteins to form a dynamic multiprotein structure at the septum site. In addition, our study shows that the cAMP-based two-hybrid system is particularly appropriate for analyzing molecular interactions between membrane proteins

    Human Immunodeficiency Virus (HIV) Type 1 Transframe Protein Can Restore Activity to a Dimerization-Deficient HIV Protease Variant

    No full text
    The protease (PR) from human immunodeficiency virus (HIV) is essential for viral replication: this aspartyl protease, active only as a dimer, is responsible for cleavage of the viral polyprotein precursors (Gag and Gag-Pol), to release the functional mature proteins. In this work, we have studied the structure-function relationships of the HIV PR by combining a genetic test to detect proteolytic activity in Escherichia coli and a bacterial two-hybrid assay to analyze PR dimerization. We showed that a drug-resistant PR variant isolated from a patient receiving highly active antiretroviral therapy is impaired in its dimerization capability and, as a consequence, is proteolytically inactive. We further showed that the polypeptide regions adjacent to the PR coding sequence in the Gag-Pol polyprotein precursor, and in particular, the transframe polypeptide (TF), located at the N terminus of PR, can facilitate the dimerization of this variant PR and restore its enzymatic activity. We propose that the TF protein could help to compensate for folding and/or dimerization defects in PR arising from certain mutations within the PR coding sequence and might therefore function to buffer genetic variations in PR

    GraXSR proteins interact with the VraFG ABC transporter to form a five-component system required for cationic antimicrobial peptide sensing and resistance in Staphylococcus aureus

    No full text
    International audienceThe GraSR two-component system (TCS) controls cationic antimicrobial peptide (CAMP) resistance in Staphylococcus aureus through the synthesis of enzymes that increase bacterial cell surface positive charges, by d-alanylation of teichoic acids and lysylination of phosphatidylglycerol, leading to electrostatic repulsion of CAMPs. The GraS histidine kinase belongs to the "intramembrane-sensing kinases" subfamily, with a structure featuring a short amino-terminal sensing domain, and two transmembrane helices separated only by a short loop, thought to be buried in the cytoplasmic membrane. The GraSR TCS is in fact a multicomponent system, requiring at least one accessory protein, GraX, in order to function, which, as we show here, acts by signaling through the GraS kinase. The graXRS genes are located immediately upstream from genes encoding an ABC transporter, vraFG, whose expression is controlled by GraSR. We demonstrated that the VraFG transporter does not act as a detoxification module, as it cannot confer resistance when produced on its own, but instead plays an essential role by sensing the presence of CAMPs and signaling through GraS to activate GraR-dependent transcription. A bacterial two-hybrid approach, designed to identify interactions between the GraXSR and VraFG proteins, was carried out in order to understand how they act in detecting and signaling the presence of CAMPs. We identified many interactions between these protein pairs, notably between the GraS kinase and both GraX and the VraG permease, indicating the existence of an original five-component system involved in CAMP sensing and signal transduction to promote S. aureus resistance

    Protein-Protein Interaction: Bacterial Two-Hybrid

    No full text
    International audienceThe bacterial two-hybrid (BACTH, for "Bacterial Adenylate Cyclase-Based Two-Hybrid") system is a simple and fast genetic approach to detecting and characterizing protein-protein interactions in vivo. This system is based on the interaction-mediated reconstitution of a cyclic adenosine monophosphate (cAMP) signaling cascade in Escherichia coli. As BACTH uses a diffusible cAMP messenger molecule, the physical association between the two interacting chimeric proteins can be spatially separated from the transcription activation readout, and therefore it is possible to analyze protein-protein interactions that occur either in the cytosol or at the inner membrane level as well as those that involve DNA-binding proteins. Moreover, proteins of bacterial origin can be studied in an environment similar (or identical) to their native one. The BACTH system may thus permit a simultaneous functional analysis of proteins of interest-provided the hybrid proteins retain their activity and their association state. This chapter describes the principle of the BACTH genetic system and the general procedures to study protein-protein interactions in vivo in E. coli
    corecore