116 research outputs found

    The matrix product representations for all valence bond states

    Full text link
    We introduce a simple representation for irreducible spherical tensor operators of the rotation group of arbitrary integer or half integer rank and use these tensor operators to construct matrix product states corresponding to all the variety of valence-bond states proposed in the Affleck-Kennedy-Lieb-Tasaki (AKLT) construction. These include the fully dimerized states of arbitrary spins, with uniform or alternating patterns of spins, which are ground states of Hamiltonians with nearest and next-nearest neighbor interactions, and the partially dimerized or AKLT/VBS (Valence Bond Solid) states, which are constructed from them by projection. The latter states are translation-invariant ground states of Hamiltonians with nearest-neighbor interactions.Comment: 24 pages, references added, the version which appears in the journa

    Bicovariant Differential Geometry of the Quantum Group SLh(2)SL_h(2)

    Full text link
    There are only two quantum group structures on the space of two by two unimodular matrices, these are the SLq(2)SL_q(2) and the SLh(2)SL_h(2) [9-13] quantum groups. One can not construct a differential geometry on SLq(2) SL_q(2), which at the same time is bicovariant, has three generators, and satisfies the Liebnitz rule. We show that such a differential geometry exists for the quantum group SLh(2)SL_h(2) and derive all of its properties

    An interacting spin flip model for one-dimensional proton conduction

    Full text link
    A discrete asymmetric exclusion process (ASEP) is developed to model proton conduction along one-dimensional water wires. Each lattice site represents a water molecule that can be in only one of three states; protonated, left-pointing, and right-pointing. Only a right(left)-pointing water can accept a proton from its left(right). Results of asymptotic mean field analysis and Monte-Carlo simulations for the three-species, open boundary exclusion model are presented and compared. The mean field results for the steady-state proton current suggest a number of regimes analogous to the low and maximal current phases found in the single species ASEP [B. Derrida, Physics Reports, {\bf 301}, 65-83, (1998)]. We find that the mean field results are accurate (compared with lattice Monte-Carlo simulations) only in the certain regimes. Refinements and extensions including more elaborate forces and pore defects are also discussed.Comment: 13pp, 6 fig

    Coarsening of Sand Ripples in Mass Transfer Models with Extinction

    Full text link
    Coarsening of sand ripples is studied in a one-dimensional stochastic model, where neighboring ripples exchange mass with algebraic rates, Γ(m)mγ\Gamma(m) \sim m^\gamma, and ripples of zero mass are removed from the system. For γ<0\gamma < 0 ripples vanish through rare fluctuations and the average ripples mass grows as \avem(t) \sim -\gamma^{-1} \ln (t). Temporal correlations decay as t1/2t^{-1/2} or t2/3t^{-2/3} depending on the symmetry of the mass transfer, and asymptotically the system is characterized by a product measure. The stationary ripple mass distribution is obtained exactly. For γ>0\gamma > 0 ripple evolution is linearly unstable, and the noise in the dynamics is irrelevant. For γ=1\gamma = 1 the problem is solved on the mean field level, but the mean-field theory does not adequately describe the full behavior of the coarsening. In particular, it fails to account for the numerically observed universality with respect to the initial ripple size distribution. The results are not restricted to sand ripple evolution since the model can be mapped to zero range processes, urn models, exclusion processes, and cluster-cluster aggregation.Comment: 10 pages, 8 figures, RevTeX4, submitted to Phys. Rev.

    Exact symmetry breaking ground states for quantum spin chains

    Full text link
    We introduce a family of spin-1/2 quantum chains, and show that their exact ground states break the rotational and translational symmetries of the original Hamiltonian. We also show how one can use projection to construct a spin-3/2 quantum chain with nearest neighbor interaction, whose exact ground states break the rotational symmetry of the Hamiltonian. Correlation functions of both models are determined in closed form. Although we confine ourselves to examples, the method can easily be adapted to encompass more general models.Comment: 4 pages, RevTex. 4 figures, minor changes, new reference

    On the Phase Covariant Quantum Cloning

    Get PDF
    It is known that in phase covariant quantum cloning the equatorial states on the Bloch sphere can be cloned with a fidelity higher than the optimal bound established for universal quantum cloning. We generalize this concept to include other states on the Bloch sphere with a definite zz component of spin. It is shown that once we know the zz component, we can always clone a state with a fidelity higher than the universal value and that of equatorial states. We also make a detailed study of the entanglement properties of the output copies and show that the equatorial states are the only states which give rise to separable density matrix for the outputs.Comment: Revtex4, 6 pages, 5 eps figure

    An Exactly Solvable Two-Way Traffic Model With Ordered Sequential Update

    Full text link
    Within the formalism of matrix product ansatz, we study a two-species asymmetric exclusion process with backward and forward site-ordered sequential update. This model, which was originally introduced with the random sequential update, describes a two-way traffic flow with a dynamic impurity and shows a phase transition between the free flow and traffic jam. We investigate the characteristics of this jamming and examine similarities and differences between our results and those with random sequential update.Comment: 25 pages, Revtex, 7 ps file

    A multi-species asymmetric exclusion process;steady state and correlation functions on a periodic lattice

    Full text link
    By generalizing the algebra of operators of the Asymmetric Simple Exclusion Process (ASEP), a multi-species ASEP in which particles can overtake each other,is defined on both open and closed one dimensional chains. On the ring the steady state and the correlation functions are obtained exactly. The relation to particle hopping models of traffic and the possibility of shock waves in open systems is discussed. The effect of the boundary condition on the steady state properties of the bulk is studied.Comment: References added, typos correcte

    Necessary and sufficient conditions for local creation of quantum discord

    Full text link
    We show that a local channel cannot create quantum discord (QD) for zero QD states of size d3d\geq3 if and only if either it is a completely decohering channel or it is a nontrivial isotropic channel. For the qubit case this propertiy is additionally characteristic to the completely decohering channel or the commutativity-preserving unital channel. In particular, the exact forms of the completely decohering channel and the commutativity-preserving unital qubit channel are proposed. Consequently, our results confirm and improve the conjecture proposed by X. Hu et al. for the case of d3d\geq3 and improve the result proposed by A. Streltsov et al. for the qubit case. Furthermore, it is shown that a local channel nullifies QD in any state if and only if it is a completely decohering channel. Based on our results, some protocols of quantum information processing issues associated with QD, especially for the qubit case, would be experimentally accessible.Comment: 8 page

    Maps between Deformed and Ordinary Gauge Fields

    Full text link
    In this paper, we introduce a map between the q-deformed gauge fields defined on the GLq(N)_{q}(N) -covariant quantum hyperplane and the ordinary gauge fields. Perturbative analysis of the q-deformed QED at the classical level is presented and gauge fixing aˋ\grave{a} la BRST is discussed. An other star product defined on the hybrid (q,h)(q,h) % -plane is explicitly constructed .Comment: 10 page
    corecore