4 research outputs found

    Microbial diversity and pathogenic properties of microbiota associated with aerobic vaginitis in women with recurrent pregnancy loss

    No full text
    Recurrent pregnancy loss (RPL) is a major reproductive problem that affects approximately 5% of couples. The objective of this study was to assess vaginal flora dysbiosis in women suffering from unexplained RPL and to investigate the pathogenic properties of the microbiota associated with aerobic vaginitis (AV). The study included one hundred fifteen women, 65 with RPL and 50 controls. The diversity of vaginal microbiota isolated was evaluated by molecular sequencing. Then, pathogenic factors, such as acid-resistance, antibiotics susceptibility, and biofilm formation were evaluated. The prevalence of AV was five-fold higher in the RPL group than in the controls (64.6% vs. 12.0%). The most prevalent isolates in the case group were Enterococcus spp. (52%) and Staphylococcus spp. (26%). All bacterial strains tolerate low pH. The prevalence of multidrug resistance (MDR) among all bacteria was 47.7%. Of all strains, 91.0% were biofilm producers. The presence of MDR was found to be related to biofilm formation. The results provide evidence supporting an increased presence of dysbiosis of the vaginal flora, especially AV, in women with RPL in Tunisia. The viability of the AV-associated bacteria and their persistence in the genitals may be due to their ability to resist low pH and to produce a biofilm

    Control of Multidrug-Resistant Pathogenic Staphylococci Associated with Vaginal Infection Using Biosurfactants Derived from Potential Probiotic <i>Bacillus</i> Strain

    No full text
    Biosurfactants exhibit antioxidant, antibacterial, antifungal, and antiviral activities. They can be used as therapeutic agents and in the fight against infectious diseases. Moreover, the anti-adhesive properties against several pathogens point to the possibility that they might serve as an anti-adhesive coating agent for medical inserts and prevent nosocomial infections, without using synthetic substances. In this study, the antimicrobial, antibiofilm, cell surface hydrophobicity, and antioxidative activities of biosurfactant extracted from Bacillus sp., against four pathogenic strains of Staphylococcus spp. associated with vaginal infection, were studied. Our results have shown that the tested biosurfactant possesses a promising antioxidant potential, and an antibacterial potency against multidrug clinical isolates of Staphylococcus, with an inhibitory diameter ranging between 27 and 37 mm, and a bacterial growth inhibition at an MIC of 1 mg/ mL, obtained. The BioSa3 was highly effective on the biofilm formation of different tested pathogenic strains. Following their treatment by BioSa3, a significant decrease in bacterial attachment (p p < 0.05) of over 50% of the surface hydrophobicity. Based on the obtained result of the bioactivities in the current study, BioSa3 is a good candidate in new therapeutics to better control multidrug-resistant bacteria and overcome bacterial biofilm-associated infections by protecting surfaces from microbial contamination

    Control of Multidrug-Resistant Pathogenic Staphylococci Associated with Vaginal Infection Using Biosurfactants Derived from Potential Probiotic Bacillus Strain

    No full text
    Biosurfactants exhibit antioxidant, antibacterial, antifungal, and antiviral activities. They can be used as therapeutic agents and in the fight against infectious diseases. Moreover, the anti-adhesive properties against several pathogens point to the possibility that they might serve as an anti-adhesive coating agent for medical inserts and prevent nosocomial infections, without using synthetic substances. In this study, the antimicrobial, antibiofilm, cell surface hydrophobicity, and antioxidative activities of biosurfactant extracted from Bacillus sp., against four pathogenic strains of Staphylococcus spp. associated with vaginal infection, were studied. Our results have shown that the tested biosurfactant possesses a promising antioxidant potential, and an antibacterial potency against multidrug clinical isolates of Staphylococcus, with an inhibitory diameter ranging between 27 and 37 mm, and a bacterial growth inhibition at an MIC of 1 mg/ mL, obtained. The BioSa3 was highly effective on the biofilm formation of different tested pathogenic strains. Following their treatment by BioSa3, a significant decrease in bacterial attachment (p &lt; 0.05) was justified by the reduction in the optical (from 0.709 to 0.111) following their treatment by BioSa3. The antibiofilm effect can be attributed to its ability to alter the membrane physiology of the tested pathogens to cause a significant decrease (p &lt; 0.05) of over 50% of the surface hydrophobicity. Based on the obtained result of the bioactivities in the current study, BioSa3 is a good candidate in new therapeutics to better control multidrug-resistant bacteria and overcome bacterial biofilm-associated infections by protecting surfaces from microbial contamination

    Characterization of Probiotic Properties of <i>Lacticaseibacillus paracasei</i> L2 Isolated from a Traditional Fermented Food “Lben”

    No full text
    Lben is a dairy fermented food that is largely consumed in Tunisia for its numerous health benefits that are related to the existence of probiotics. Lactic Acid Bacteria (LAB) are well known for their beneficial probiotic properties for humans, especially when administered in adequate amounts. The aim of this study was to isolate and investigate the probiotics properties of Lacticaseibacillus paracasei L2 from Lben. The isolated strain was identified by 16S r-RNA gene sequences and MALDI- TOF MS. To evaluate the probiotic potential of the isolated bacterium, in vitro tests were performed, including adhesion ability to HCT-116 cells, survival in acid and bile salt conditions, lysozyme resistance, biofilm formation, hemolytic activity, antioxidant activity, and antimicrobial activity. Our results revealed that the selected Lacticaseibacillus paracasei L2 strain expressed a high adherence to HCT-116 cells (45.03%), survived under acidic conditions (pH3), and showed a resistance to bile salts. The strain was considered as safe (α-hemolysis). L. paracasei L2 showed a high biofilm-formation ability (OD 570 > 1.7) after 24 h of incubation. It also demonstrated an important antioxidant activity in the range of 85.31% for the intact cells. However, an antimicrobial activity against pathogens, namely Staphylococcus aureus, was detected with an IZ that was above 19 mm. In conjunction with the results obtained and the technological properties of Lacticaseibacillus paracasei L2 (proteolytic property, autolytic activity, acidifying activity, and EPS production), this strain may be used as a probiotic for manufacturing fermented foods
    corecore