26 research outputs found

    Reactive Oxygen Species in Chronic Obstructive Pulmonary Disease

    Get PDF
    Chronic obstructive pulmonary disease (COPD) includes chronic bronchitis and emphysema. Environmental exposure, primarily cigarette smoking, can cause high oxidative stress and is the main factor of COPD development. Cigarette smoke also contributes to the imbalance of oxidant/antioxidant due to exogenous reactive oxygen species (ROS). Moreover, endogenously released ROS during the inflammatory process and mitochondrial dysfunction may contribute to this disease progression. ROS and reactive nitrogen species (RNS) can oxidize different biomolecules such as DNA, proteins, and lipids leading to epithelial cell injury and death. Various detoxifying enzymes and antioxidant defense systems can be involved in ROS removal. In this review, we summarize the main findings regarding the biological role of ROS, which may contribute to COPD development, and cytoprotective mechanisms against this disease progression

    Reactive Oxygen Species in Chronic Obstructive Pulmonary Disease

    Get PDF
    Chronic obstructive pulmonary disease (COPD) includes chronic bronchitis and emphysema. Environmental exposure, primarily cigarette smoking, can cause high oxidative stress and is the main factor of COPD development. Cigarette smoke also contributes to the imbalance of oxidant/antioxidant due to exogenous reactive oxygen species (ROS). Moreover, endogenously released ROS during the inflammatory process and mitochondrial dysfunction may contribute to this disease progression. ROS and reactive nitrogen species (RNS) can oxidize different biomolecules such as DNA, proteins, and lipids leading to epithelial cell injury and death. Various detoxifying enzymes and antioxidant defense systems can be involved in ROS removal. In this review, we summarize the main findings regarding the biological role of ROS, which may contribute to COPD development, and cytoprotective mechanisms against this disease progression

    Extracellular cyclophilin-A stimulates ERK1/2 phosphorylation in a cell-dependent manner but broadly stimulates nuclear factor kappa B

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the peptidyl-prolyl isomerase, cyclophilin-A (peptidyl-prolyl isomerase, PPIA), has been studied for decades in the context of its intracellular functions, its extracellular roles as a major contributor to both inflammation and multiple cancers have more recently emerged. A wide range of activities have been ascribed to extracellular PPIA that include induction of cytokine and matrix metalloproteinase (MMP) secretion, which potentially underlie its roles in inflammation and tumorigenesis. However, there have been conflicting reports as to which particular signaling events are under extracellular PPIA regulation, which may be due to either cell-dependent responses and/or the use of commercial preparations recently shown to be highly impure.</p> <p>Methods</p> <p>We have produced and validated the purity of recombinant PPIA in order to subject it to a comparative analysis between different cell types. Specifically, we have used a combination of multiple methods such as luciferase reporter screens, translocation assays, phosphorylation assays, and nuclear magnetic resonance to compare extracellular PPIA activities in several different cell lines that included epithelial and monocytic cells.</p> <p>Results</p> <p>Our findings have revealed that extracellular PPIA activity is cell type-dependent and that PPIA signals via multiple cellular receptors beyond the single transmembrane receptor previously identified, Extracellular Matrix MetalloPRoteinase Inducer (EMMPRIN). Finally, while our studies provide important insight into the cell-specific responses, they also indicate that there are consistent responses such as nuclear factor kappa B (NFÎşB) signaling induced in all cell lines tested.</p> <p>Conclusions</p> <p>We conclude that although extracellular PPIA activates several common pathways, it also targets different receptors in different cell types, resulting in a complex, integrated signaling network that is cell type-specific.</p

    L'anesthésie assistée électroniquement au cabinet dentaire

    No full text
    En 1907, Nogué et Cavaroz s'illustrent par la mise au point d'une technique d'anesthésie intra-osseuse manuelle. Afin de démontrer l'efficacité de cette technique, la réalisation d'une étude sur près de 1200 cas a vu le jour. Cependant force est de constater que les difficultés de l'acte opératoire ont fait échec à la diffusion de cette technique, le dogme de l'époque, où les théoriciens n'approuvaient pas la mise en place de celle-ci, a également constitué un obstacle à sa diffusion. Un siècle après ce constat, des systèmes d'anesthésie intra-osseuse sont apparus, tels que le Quicksleeper® ou l'Anesto®. Dans ce cadre, nous avons mené une étude auprès d'une centaine de praticiens afin de mettre en exergue les avantages et inconvénients de ces systèmes.LILLE2-UFR Odontologie (593502202) / SudocSudocFranceF

    Reactive Oxygen Species in Chronic Obstructive Pulmonary Disease

    Get PDF
    Chronic obstructive pulmonary disease (COPD) includes chronic bronchitis and emphysema. Environmental exposure, primarily cigarette smoking, can cause high oxidative stress and is the main factor of COPD development. Cigarette smoke also contributes to the imbalance of oxidant/antioxidant due to exogenous reactive oxygen species (ROS). Moreover, endogenously released ROS during the inflammatory process and mitochondrial dysfunction may contribute to this disease progression. ROS and reactive nitrogen species (RNS) can oxidize different biomolecules such as DNA, proteins, and lipids leading to epithelial cell injury and death. Various detoxifying enzymes and antioxidant defense systems can be involved in ROS removal. In this review, we summarize the main findings regarding the biological role of ROS, which may contribute to COPD development, and cytoprotective mechanisms against this disease progression

    Teneur de la chitine des parois, relation avec la résistance des levures à l'amphotéricine B

    No full text
    Afin de définir le rôle de la paroi et en particulier la chitine dans la résistance des levures à l'Amphotéricine E, plusieurs espèces et souches sont utilisées pour cette étude : Rhodotorula, Schizosaccharomyces, Candida et Kluyveromyces. Bien que ces levures ne soient pas des agents pathogènes (à l'exception de la souche Candida albicans), elles ont la caractéristique d'avoir des différences de résistance ainsi que des taux de chitine différents. Les sphéroplastes des souches étudiées ont montré une sensibilité élevée à l'AmE. En effet, les levures débarrassées de leur paroi sont 3 à 6 fois plus sensibles à l'AmE que les cellules intactes, et dans ces conditions les différences de sensibilité à l'AmE entre les souches sont moins prononcées. De plus, l'extraction et le dosage des stérols des levures ne montrent aucune relation directe entre la quantité de ces stérols et en particulier de l'ergostérol et la résistance de ces levures à l'AmE. Ceci montre que la membrane n'est pas la seule structure cellulaire impliquée dans le mécanisme d'action de l'AmE. Il existe donc un rôle de la paroi dans l'action de l'AmE sur les levures. Dans le but de perturber la structure pariétale et de cibler ainsi le composé intervenant dans la rés'istance des levures à l'antifongique, les levures ont été traitées par différentes enzymes. Or, après incubation des cellules avec les protéases, phosphatases et les glucanases ces dernières deviennent plus sensibles à cet antifongique. Par contre, le traitement des levures par la chitinase rend les levures plus résistantes à cet antifongique. L'analyse quantitative des constituants de la paroi montre qu'à l'exception de la chitine qui varie, les teneurs des autres constituants ne montrent aucune relation entre leurs variations quantitatives et la résistance (et sensibilité) des levures à l'AmE. Par contre, les parois des deux levures qui ont acquis une résistance à l'AmE sont toutes les deux plus riches en chitine que leurs cellules mères respectives, alors que l'augmentation de la résistance , intrinsèque des autres souches de levures s'accompagne d'une diminution du taux de chitine. Les activités chitine synthétases, CSI, CSII et CSIII montrent que les trois chitine synthétases sont présentes tant chez les mutants que chez les souches mères et que la souche Kb présente une activité enzymatique plus élevée que la souche Kbm. Ce qui rejette l 'hypothèse de l'augmentation des taux de chitine dans les parois des mutants en conséquence à une activation des chitine synthétases. Comme la chitinase peut aussi agir sur les taux de chitine pariétale, nous avons vérifié l'expression de cette enzyme chez les différentes souches. Cette enzyme est détectée à des taux très faibles chez les souches qui ont acquis une résistance à l'AmE par comparaison à l'activite des souches mères respectives. Ainsi l'augmentation du taux de chitine dans les parois cellulaires des mutants semble résulter d'une répression ou diminution d'activités de la chitinase et la chitine pariétale est un élément à retenir pour expliquer les mécanismes d'action de l 'AmE pour chaque type de levures.NANCY1-SCD Pharmacie-Odontologie (543952101) / SudocSudocFranceF

    Impaired Alveolar Re-Epithelialization in Pulmonary Emphysema

    No full text
    Alveolar type II (ATII) cells are progenitors in alveoli and can repair the alveolar epithelium after injury. They are intertwined with the microenvironment for alveolar epithelial cell homeostasis and re-epithelialization. A variety of ATII cell niches, transcription factors, mediators, and signaling pathways constitute a specific environment to regulate ATII cell function. Particularly, WNT/&beta;-catenin, YAP/TAZ, NOTCH, TGF-&beta;, and P53 signaling pathways are dynamically involved in ATII cell proliferation and differentiation, although there are still plenty of unknowns regarding the mechanism. However, an imbalance of alveolar cell death and proliferation was observed in patients with pulmonary emphysema, contributing to alveolar wall destruction and impaired gas exchange. Cigarette smoking causes oxidative stress and is the primary cause of this disease development. Aberrant inflammatory and oxidative stress responses result in loss of cell homeostasis and ATII cell dysfunction in emphysema. Here, we discuss the current understanding of alveolar re-epithelialization and altered reparative responses in the pathophysiology of this disease. Current therapeutics and emerging treatments, including cell therapies in clinical trials, are addressed as well

    Mitochondrial Ribosome Dysfunction in Human Alveolar Type II Cells in Emphysema

    No full text
    Pulmonary emphysema is characterized by airspace enlargement and the destruction of alveoli. Alveolar type II (ATII) cells are very abundant in mitochondria. OXPHOS complexes are composed of proteins encoded by the mitochondrial and nuclear genomes. Mitochondrial 12S and 16S rRNAs are required to assemble the small and large subunits of the mitoribosome, respectively. We aimed to determine the mechanism of mitoribosome dysfunction in ATII cells in emphysema. ATII cells were isolated from control nonsmokers and smokers, and emphysema patients. Mitochondrial transcription and translation were analyzed. We also determined the miRNA expression. Decreases in ND1 and UQCRC2 expression levels were found in ATII cells in emphysema. Moreover, nuclear NDUFS1 and SDHB levels increased, and mitochondrial transcribed ND1 protein expression decreased. These results suggest an impairment of the nuclear and mitochondrial stoichiometry in this disease. We also detected low levels of the mitoribosome structural protein MRPL48 in ATII cells in emphysema. Decreased 16S rRNA expression and increased 12S rRNA levels were observed. Moreover, we analyzed miR4485-3p levels in this disease. Our results suggest a negative feedback loop between miR-4485-3p and 16S rRNA. The obtained results provide molecular mechanisms of mitoribosome dysfunction in ATII cells in emphysema
    corecore