8,855 research outputs found

    On the Stability of Random Multiple Access with Feedback Exploitation and Queue Priority

    Full text link
    In this paper, we study the stability of two interacting queues under random multiple access in which the queues leverage the feedback information. We derive the stability region under random multiple access where one of the two queues exploits the feedback information and backs off under negative acknowledgement (NACK) and the other, higher priority, queue will access the channel with probability one. We characterize the stability region of this feedback-based random access protocol and prove that this derived stability region encloses the stability region of the conventional random access (RA) scheme that does not exploit the feedback information

    Sparse Spectrum Sensing in Infrastructure-less Cognitive Radio Networks via Binary Consensus Algorithms

    Full text link
    Compressive Sensing has been utilized in Cognitive Radio Networks (CRNs) to exploit the sparse nature of the occupation of the primary users. Also, distributed spectrum sensing has been proposed to tackle the wireless channel problems, like node or link failures, rather than the common (centralized approach) for spectrum sensing. In this paper, we propose a distributed spectrum sensing framework based on consensus algorithms where SU nodes exchange their binary decisions to take global decisions without a fusion center to coordinate the sensing process. Each SU will share its decision with its neighbors, and at every new iteration each SU will take a new decision based on its current decision and the decisions it receives from its neighbors; in the next iteration, each SU will share its new decision with its neighbors. We show via simulations that the detection performance can tend to the performance of majority rule Fusion Center based CRNs

    Generalized Instantly Decodable Network Coding for Relay-Assisted Networks

    Full text link
    In this paper, we investigate the problem of minimizing the frame completion delay for Instantly Decodable Network Coding (IDNC) in relay-assisted wireless multicast networks. We first propose a packet recovery algorithm in the single relay topology which employs generalized IDNC instead of strict IDNC previously proposed in the literature for the same relay-assisted topology. This use of generalized IDNC is supported by showing that it is a super-set of the strict IDNC scheme, and thus can generate coding combinations that are at least as efficient as strict IDNC in reducing the average completion delay. We then extend our study to the multiple relay topology and propose a joint generalized IDNC and relay selection algorithm. This proposed algorithm benefits from the reception diversity of the multiple relays to further reduce the average completion delay in the network. Simulation results show that our proposed solutions achieve much better performance compared to previous solutions in the literature.Comment: 5 pages, IEEE PIMRC 201

    Sparse Reconstruction-based Detection of Spatial Dimension Holes in Cognitive Radio Networks

    Full text link
    In this paper, we investigate a spectrum sensing algorithm for detecting spatial dimension holes in Multiple Inputs Multiple Outputs (MIMO) transmissions for OFDM systems using Compressive Sensing (CS) tools. This extends the energy detector to allow for detecting transmission opportunities even if the band is already energy filled. We show that the task described above is not performed efficiently by regular MIMO decoders (such as MMSE decoder) due to possible sparsity in the transmit signal. Since CS reconstruction tools take into account the sparsity order of the signal, they are more efficient in detecting the activity of the users. Building on successful activity detection by the CS detector, we show that the use of a CS-aided MMSE decoders yields better performance rather than using either CS-based or MMSE decoders separately. Simulations are conducted to verify the gains from using CS detector for Primary user activity detection and the performance gain in using CS-aided MMSE decoders for decoding the PU information for future relaying.Comment: accepted for PIMRC 201

    Implications of a Doha Agreement on Agricultural Markets in Sudan

    Get PDF
    The latest round of multilateral trade negotiations was launched at the ministerial meeting of the World Trade Organization in Doha, Qatar, in November 2001. Agriculture is a major item on the agenda for the Doha Round. The primary focus is on the three “pillars” of the Uruguay Round agreement—domestic support, market access, and export competition. The framework for a final agreement was finalized at a Ministerial meeting in Geneva in July 2004, but contains few details on modalities (e.g., the formula to be used for reductions in tariffs/increases in tariff-rate quotas, quantitative limitations on domestic support, and the schedule for the elimination of export subsidies). Detailed proposals on a number of these issues were put forward in October 2005 by the European Union and the United States, in addition to the G10 and G20 groups of countries. The Doha Round negotiations have since run into several major hurdles, and it is unclear at this time if, or when, an agreement might be reached. Nevertheless, the range of alternatives for key parameters is becoming increasingly clear. In this paper we analyze empirically the implications of the provisions of a Doha agreement for agricultural markets in Sudan. The analysis is based on the PEATSim model (Partial Equilibrium Agricultural Trade Simulator) developed by the Penn State University in collaboration with the Economic Research Service of the U.S. Department of Agriculture. This dynamic, multi-country, multi-commodity model covers 35 of the major traded agricultural commodities and contains a detailed representation of markets and policies in twelve countries/regions that are particularly significant for world agricultural trade. The model is used to analyze the US, EU, and G20 negotiating proposals from October 2005. The PEATSim model has previously been used to analyze a number of agricultural trade and policy reform scenarios, including global agricultural trade liberalization in all commodities, trade liberalization in global dairy markets, and trade liberalization in coarse grain markets. Sudan is not a currently member of the WTO although it has been in the accession process since 1994. Assuming that Sudan continues outside of WTO membership, its trade policies will not be directly affected by a Doha agreement. But Sudan could be affected significantly by changes in global agricultural markets. Preliminary results using PEATSim indicate an increase in Sudanese production and exports of course grains, peanuts, cotton, sunflowers, and beef due to increases in world prices. Imports of several products increase, especially wheat, rice, and poultry meat. On the whole the preliminary results suggest that Sudanese agriculture should benefit from a Doha agreement.Doha Agreement, Sudan, agricultural markets, trade policy, Agricultural and Food Policy, International Development, International Relations/Trade, Political Economy,

    A Pricing-Based Cooperative Spectrum Sharing Stackelberg Game

    Full text link
    We consider the problem of cooperative spectrum sharing among a primary user (PU) and multiple secondary users (SUs) under quality of service (QoS) constraints. The SUs network is controlled by the PU through a relay which gets a revenue for amplifying and forwarding the SUs signals to their respective destinations. The relay charges each SU a different price depending on its received signal-to-interference and-noise ratio (SINR). The relay can control the SUs network and maximize any desired PU utility function. The PU utility function represents its rate, which is affected by the SUs access, and its gained revenue to allow the access of the SUs. The SU network can be formulated as a game in which each SU wants to maximize its utility function; the problem is formulated as a Stackelberg game. Finally, the problem of maximizing the primary utility function is solved through three different approaches, namely, the optimal, the heuristic and the suboptimal algorithms.Comment: 7 pages. IEEE, WiOpt 201

    Free-free and H42alpha emission from the dusty starburst within NGC 4945 as observed by ALMA

    Full text link
    We present observations of the 85.69 GHz continuum emission and H42alpha line emission from the central 30 arcsec within NGC 4945. Both sources of emission originate from nearly identical structures that can be modelled as exponential discs with a scale length of ~2.1 arcsec (or ~40 pc). An analysis of the spectral energy distribution based on combining these data with archival data imply that 84% +/- 10% of the 85.69 GHz continuum emission originates from free-free emission. The electron temperature is 5400 +/- 600 K, which is comparable to what has been measured near the centre of the Milky Way Galaxy. The star formation rate (SFR) based on the H42alpha and 85.69 GHz free-free emission (and using a distance of 3.8 Mpc) is 4.35 +/- 0.25 M/yr. This is consistent with the SFR from the total infrared flux and with previous measurements based on recombination line emission, and it is within a factor of ~2 of SFRs derived from radio data. The Spitzer Space Telescope 24 micron data and Wide-field Infrared Survey Explorer 22 micron data yield SFRs ~10x lower than the ALMA measurements, most likely because the mid-infrared data are strongly affected by dust attenuation equivalent to A_V=150. These results indicate that SFRs based on mid-infrared emission may be highly inaccurate for dusty, compact circumnuclear starbursts.Comment: 19 pages, 9 figures, accepted for publication in MNRA
    corecore