17 research outputs found

    Signaling Pathways of Receptors Involved in Platelet Activation andShedding of These Receptors in Stored Platelets

    Get PDF
    All cells encounter various signals coming from the surrounding environment and they need toreceive and respond to these signals in order to perform their functions. Cell surface receptorsare responsible for signal transduction .Platelets are blood cells which perform several functionsusing diverse receptors. Platelet concentrate is one of the most consumed blood products.However, due to the short lifespan of the platelets and platelets damage during storage, we faceshortage of platelet products. One of the damages that platelets undergo during storage is theloss of surface receptors. Since cell surface receptors are responsible for all cell functions, theloss of platelet receptors reduces the quality of platelet products. In this study, we reviewed theimportant receptors involved in platelet activation and their associated signaling pathways. Wealso looked at the platelet receptors that shed during storage and the causes of this incident.We found that GPIbα, P-selectin, CD40 and GPVI are platelet receptors that fall during plateletstorage at room temperature. Considering that GPVI and GPIbα are the most important receptorswhich involved in platelet activation, their shedding can cause decrease in platelet activationafter transfusion and decrease thrombus consistence. Shear stress and platelet contact with thecontainer wall are among the mechanisms discussed in this process, but studies in this area haveto be continued

    NF-Kβ Activation in U266 Cells on Mesenchymal Stem Cells

    Get PDF
    Purpose: Mesenchymal Stem Cells (MSCs) are one of the essential members of Bone Marrow (BM) microenvironment and the cells affect normal and malignant cells in BM milieu. One of the most important hematological malignancies is Multiple Myeloma (MM). Numerous studies reported various effects of MSCs on myeloma cells. MSCs initiate various signaling pathways in myeloma cells, particularly NF-kβ. NF-kβ signaling pathway plays pivotal role in the survival, proliferation and resistance of myeloma cells to the anticancer drugs, therefore this pathway can be said to be a vital target for cancer therapy. This study examined the relationship between U266 cells and MSCs. Methods: U266 cells were cultured with Umbilical Cord Blood derived-MSCs (UCB-MSCs) and Conditioned Medium (C.M). Effect of UCB-MSCs and C.M on proliferation rate and CD54 expression of U266 cells were examined with MTT assay and Flowcytometry respectively. Furthermore, expression of CXCL1, PECAM-1, JUNB, CCL2, CD44, CCL4, IL-6, and IL-8 were analyzed by Real Time-PCR (RT-PCR). Moreover, status of p65 protein in NF-kβ pathway assessed by western blotting. Results: Our findings confirm that UCB-MSCs support U266 cells proliferation and they increase CD54 expression. In addition, we demonstrate that UCB-MSCs alter the expression of CCL4, IL-6, IL-8, CXCL1 and the levels of phosphorylated p65 in U266 cells.Conclusion: Our study provides a novel sight to the role of MSCs in the activation of NF-kβ signaling pathway. So, NF-kβ signaling pathway will be targeted in future therapies against MM

    Methods of Liver Stem Cell Therapy in Rodents as Models of Human Liver Regeneration in Hepatic Failure

    Get PDF
    Cell therapy is a promising intervention for treating liver diseases and liver failure. Different animal models of human liver cell therapy have been developed in recent years. Rats and mice are the most commonly used liver failure models. In fact, rodent models of hepatic failure have shown significant improvement in liver function after cell infusion. With the advent of stem-cell technologies, it is now possible to re-programme adult somatic cells such as skin or hair-follicle cells from individual patients to stem-like cells and differentiate them into liver cells. Such regenerative stem cells are highly promising in the personalization of cell therapy. The present review article will summarize current approaches to liver stem cell therapy with rodent models. In addition, we discuss common cell tracking techniques and how tracking data help to direct liver cell therapy research in animal models of hepatic failure

    The Effect of Mesenchymal Stem Cell-Derived Microvesicles on Erythroid Differentiation of Umbilical Cord Blood-Derived CD34+ Cells

    Get PDF
    Purpose: Mesenchymal stem cells (MSCs) play an important role in the proliferation and differentiation of hematopoietic stem cells (HSCs) in the bone marrow via cell-to-cell contact, as well as secretion of cytokines and microvesicles (MVs). In this study, we investigated the effect of mesenchymal stem cell-derived microvesicles (MSC-MVs) on erythroid differentiation of umbilical cord blood-derived CD34+ cells. Methods: In this descriptive study, CD34+ cells were cultured with mixture of SCF (10 ng/ml) and rhEPO (5 U/ml) cytokines in complete IMDM medium as positive control group. Then, in MV1- and MV2-groups, microvesicles at 10 and 20 µg/ml concentration were added. After 72 hours, erythroid specific markers (CD71 and CD235a) and genes (HBG1, GATA1, FOG1 and NFE2) were assessed by flow cytometry and qRT-PCR, respectively. Results: The expression of specific markers of the erythroid lineages (CD71 and GPA) in the presence of different concentration of microvesicles were lower than that of the control group (P<0.001). Also, the expression of specific genes of the erythroid lineages (NFE2, FOG1, GATA1, and HBG1) was investigated in comparison to the internal control (GAPDH). Among all of them, HBG1 and FOG1 genes were significantly decreased to the control group (P<0.0001) but GATA1 and NFE2 gene expressions was not significant. Conclusion: The results of this study showed that MSC-MVs decrease the erythroid differentiation of umbilical cord blood-derived CD34+ cells. Therefore, MSC-MVs play a key role in the regulation of normal erythropoiesis

    The Angiognic Chemokines Expression Profile of Myeloid Cell Lines Co-Cultured with Bone Marrow-Derived Mesenchymal Stem Cells

    No full text
    Objective Angiogenesis, the process of formation of new blood vessels, is essential for development of solid tumors. At first, it was first assumed that angiogenesis is not implicated in the development of acute myeloid leukemia (AML) as a liquid tumor. One of the most important elements in bone marrow microenvironment is mesenchymal stem cells (MSCs). These cells possess an intrinsic tropism for sites of tumor in various types of cancers and have an impact on solid tumors growth by affecting the angiogenic process. But so far, our knowledge is limited about MSCs’ role in liquid tumors angiogenesis. By increasing our knowledge about the role of MSCs on angiogenesis, new therapeutic strategies can be used to improve the status of patients with leukemia. Materials and Methods In this experimental study, HL-60, K562 and U937 cells were separately co-cultured with bone marrow derived-MSCs and after 8, 16 and 24 hours, alterations in the expression of 10 chemokine genes involved in angiogenesis, were evaluated by quantitative real time-polymerase chain reaction (qRT-PCR). Mono-cultures of leukemia cell lines were used as controls. Results We observed that in HL-60 and K562 cells co-cultured with MSCs, the expression of CXCL10 and CXCL3 genes are increased, respectively as compared to the control cells. Also, in U937 cells co-cultured with MSCs, the expression of CXCL6 gene was upgraded. Moreover in U937 cells, CCL2 gene expression in the first 16 hours was lower than the control cells, while within 24 hours its expression augmented. Conclusion Our observations, for the first time, demonstrated that bone marrow (BM)-MSCs are able to alter the expression profile of chemokine genes involved in angiogenesis, in acute myeloid leukemia cell lines. MSCs cause different effects on angiogenesis in different leukemia cell lines; in some cases, MSCs promote angiogenesis, and in others, inhibit it

    Mesenchymal Stem Cell - Derived Exosomes: New Opportunity i n Cell - Free Therapy

    No full text
    Mesenchymal stromal/stem cells (MSCs) are involved in tissue homeostasis through direct cell - to - cell interaction, as well as secretion of soluble factors. Exosomes are the sort of soluble biological mediators that obtained from MSCs cultured media in vitro. MSC - deriv ed exosomes ( MSC - DEs ) which produced under physiological or pathological conditions are central mediators of intercellular communications by conveying proteins, lipids, mRNAs, siRNA, ribosomal RNAs and miRNAs to the neighbor or distant cells. MSC - DEs have been tested in various disease models, and the results have revealed that their functions are similar to those of MSCs. They have the supportive functions in organisms such as repairing tissue damages, suppressing inflammatory responses, and modulating the immune system. MSC - DEs are of great interest in the scope of regenerative medicine because of their unique capacity to the regeneration of the damaged tissues , and the present paper aims to introduce MSC - DEs as a novel hope in cell - free therapy

    The Effects of Hypoxia on U937 Cell Line in Mesenchymal Stem Cells Co-Culture System

    No full text
    Purpose: Mesenchymal Stem Cells (MSCs) are the most important members of Bone Marrow (BM) milieu. MSCs affect different kinds of cells, particularly malignant cells of hematologic malignancies, but the effects of MSCs are unclear exactly. Here we analyzed the effects of derived Umbilical Cord Blood-MSCs on proliferation, cell death and some surface markers of U937 cell line in a Co-culture system with MSCs. Methods: Here we designed Co-culture systems as a model of BM milieu. We cultured U937 cells on UCB-MSCs and MSCs Conditioned Medium (C.M) driven and then treated U937 cells with optimum concentration of chloride cobalt (CoCl2) as a hypoxia-mimetic agent. In addition, we applied suitable concentrations of H2O2 to induce cell death. Proliferation rate, cell death rate and some surface markers of hypoxic U937 cells were analyzed by MTT assay, flow cytometry and Real Time-PCR were flown respectively. Results: UCB-MSCs showed supportive effects on U937 proliferation rate in normoxia and hypoxia. Lethal effect of H2O2 suppressed in the presence of UCB-MSCs in hypoxia and normoxia. Among CD11a, CD14, CD49d, CD54 and CD116 markers, CD49d was down regulated in presence of UCB-MSCs and CD116 was up regulated in hypoxia. Other markers didn’t show any significant changes. Conclusion: This work provides evidences that MSCs play critical roles in U937 cells biology. These observations shed new light on MSCs roles and demonstrated that MSCs should be regarded as an important member of BM milieu in several clinical applications such as BM transplantation prognosis and treatment of hematologic malignancies

    Immunomodulatory Nature and Site Specific Affinity of Mesenchymal Stem Cells: a Hope in Cell Therapy

    No full text
    Immunosuppressive ability of mesenchymal stem cells (MSCs), their differentiation properties to various specialized tissue types, ease of in vitro and in vivo expansion and specific migration capacity, make them to be tested in different clinical trials for the treatment of various diseases. The immunomodulatory effects of MSCs are less identified which probably has high clinically significance. The clinical trials based on primary research will cause better understanding the ability of MSCs in immunomodulatory applications and site specific migration in the optimization of therapy. So, this review focus on MSCs functional role in modulating immune responses, their ability in homing to tumor, their potency as delivery vehicle and their medical importance

    PEGylated Human Serum Albumin: Review of PEGylation, Purification and Characterization Methods

    No full text
    Human serum albumin (HSA) is a non-glycosylated, negatively charged protein (Mw: about 65-kDa) that has one free cystein residue (Cys 34), and 17 disulfide bridges that these bridges have main role in its stability and longer biological life-time (15 to 19 days). As HSA is a multifunctional protein, it can also bind to other molecules and ions in addition to its role in maintaining colloidal osmotic pressure (COP) in various diseases. In critical illnesses changes in the level of albumin between the intravascular and extravascular compartments and the decrease in its serum concentration need to be compensated using exogenous albumin; but as the size of HSA is an important parameter in retention within the circulation, therefore increasing its molecular size and hydrodynamic radius of HSA by covalent attachment of poly ethylene glycol (PEG), that is known as PEGylation, provides HSA as a superior volume expander that not only can prevent the interstitial edema but also can reduce the infusion frequency. This review focuses on various PEGylation methods of HSA (solid phase and liquid phase), and compares various methods to purifiy and characterize the pegylated form

    Mesenchymal stromal cell-derived secretome-based therapy for neurodegenerative diseases: overview of clinical trials

    No full text
    Abstract Background Over the past few years, mesenchymal stromal cells (MSCs) have attracted a great deal of scientific attention owing to their promising results in the treatment of incurable diseases. However, there are several concerns about their possible side effects after direct cell transplantation, including host immune response, time-consuming cell culture procedures, and the dependence of cell quality on the donor, which limit the application of MSCs in clinical trials. On the other hand, it is well accepted that the beneficial effects of MSCs are mediated by secretome rather than cell replacement. MSC secretome refers to a variety of bioactive molecules involved in different biological processes, specifically neuro-regeneration. Main body Due to the limited ability of the central nervous system to compensate for neuronal loss and relieve disease progress, mesenchymal stem cell products may be used as a potential cure for central nervous system disorders. In the present study, the therapeutic effects of MSC secretome were reviewed and discussed the possible mechanisms in the three most prevalent central nervous system disorders, namely Alzheimer's disease, multiple sclerosis, and Parkinson's disease. The current work aimed to help discover new medicine for the mentioned complications. Conclusion The use of MSC-derived secretomes in the treatment of the mentioned diseases has encouraging results, so it can be considered as a treatment option for which no treatment has been introduced so far
    corecore