27 research outputs found

    Adipose Tissue and Adrenal Glands: Novel Pathophysiological Mechanisms and Clinical Applications

    Get PDF
    Hormones produced by the adrenal glands and adipose tissues have important roles in normal physiology and are altered in many disease states. Obesity is associated with changes in adrenal function, including increase in adrenal medullary catecholamine output, alterations of the hypothalamic-pituitary-adrenal (HPA) axis, elevations in circulating aldosterone together with changes in adipose tissue glucocorticoid metabolism, and enhanced adipocyte mineralocorticoid receptor activity. It is unknown whether these changes in adrenal endocrine function are in part responsible for the pathogenesis of obesity and related comorbidities or represent an adaptive response. In turn, adipose tissue hormones or “adipokines” have direct effects on the adrenal glands and interact with adrenal hormones at several levels. Here we review the emerging evidence supporting the existence of “cross talk” between the adrenal gland and adipose tissue, focusing on the relevance and roles of their respective hormones in health and disease states including obesity, metabolic syndrome, and primary disorders of the adrenals

    Genomic Profiling of Thyroid Nodules: Current Role for ThyroSeq Next-Generation Sequencing on Clinical Decision-Making

    Get PDF
    In recent years there has been an increased awareness of the genetic alterations underlying both benign and malignant neoplasms of the thyroid. Next-generation sequencing (NGS) is an emerging technology that allows for rapid detection of a large number of genetic mutations in thyroid fine-needle aspiration (FNA) specimens. NGS for targeted mutational analysis in thyroid tumors has been proposed as a tool to assist in the diagnosis of thyroid nodules with indeterminate FNA cytology. Results of genomic testing of thyroid nodules and thyroid cancers could also have prognostic implications and play a role in determining optimal treatment strategies including targeted therapies. We provide a critical review of existing studies assessing the performance of the ThyroSeq NGS test for the diagnosis and management of patients with thyroid nodules with indeterminate cytopathology and discuss the applicability of findings from these studies to clinical practice. While there are early indications to suggest a possible utility of data obtained from NGS to aid in prognostication and therapeutic decisionmaking in thyroid cancer, we recommend judicious use and cautious interpretation of such molecular testing until results of ongoing clinical trials become available. Lastly, we discuss recommendations provided from clinical practice guidelines regarding the use of mutation detection via NGS in the diagnostic evaluation of thyroid nodules

    Current State of Molecular Cytology in Thyroid Nodules: Platforms and Their Diagnostic and Theranostic Utility

    Get PDF
    The high prevalence of thyroid nodules and increased availability of neck ultrasound have led to an increased incidence of diagnostic thyroid fine needle aspirations, with approximately 20% yielding indeterminate results. The recent availability of molecular tests has helped guide the clinical management of these cases. This paper aims to review and compare three main commercially available molecular cytology platforms in the U.S.—Afirma GSC, Thyroseq GC, and ThyGeNEXT + ThyraMIR. Sequential improvements of the Afirma GSC and Thyroseq GC tests have increased positive and negative predictive values, sensitivity, and specificity. Comparative studies revealed similar diagnostic performance between these tests, with considerations for factors such as cost and processing time. Thyroseq GC provides detailed genomic information and specific management recommendations. ThyGeNEXT + ThyraMIR, though less studied, presents promising results, particularly in miRNA analysis for weak driver mutations. Challenges in interpreting results include variations in reporting and the evolving nature of testing platforms. Questions persist regarding cost-effectiveness and the utility of ultrasound characteristics in selecting candidates for molecular testing. While molecular testing has primarily served diagnostic purposes, advancements in understanding genetic alterations now offer therapeutic implications. FDA-approved options target specific genetic alterations, signaling a promising future for tailored treatments

    Differential Effect of Saturated and Unsaturated Free Fatty Acids on the Generation of Monocyte Adhesion and Chemotactic Factors by Adipocytes: Dissociation of Adipocyte Hypertrophy From Inflammation

    Get PDF
    OBJECTIVE—Obesity is associated with monocyte-macroph-age accumulation in adipose tissue. Previously, we showed that glucose-stimulated production by adipocytes of serum amyloid A (SAA), monocyte chemoattractant protein (MCP)-1, and hyaluro-nan (HA) facilitated monocyte accumulation. The current objec-tive was to determine how the other major nutrient, free fatty acids (FFAs), affects these molecules and monocyte recruitment by adipocytes. RESEARCH DESIGN AND METHODS—Differentiated 3T3-L1, Simpson-Golabi-Behmel syndrome adipocytes, and mouse embryonic fibroblasts were exposed to various FFAs (250 mol/l) in either 5 or 25 mmol/l (high) glucose for evaluation of SAA, MCP-1, and HA regulation in vitro. RESULTS—Saturated fatty acids (SFAs) such as laurate, myris-tate, and palmitate increased cellular triglyceride accumulation, SAA, and MCP-1 expression; generated reactive oxygen species (ROS); and increased nuclear factor (NF) B translocation in both 5 and 25 mmol/l glucose. Conversely, polyunsaturated fatty acids (PUFAs) such as arachidonate, eicosapentaenate, and docosahexaenate (DHA) decreased these events. Gene expres-sion could be dissociated from triglyceride accumulation. Al-though excess glucose increased HA content, SFAs, oleate, and linoleate did not. Antioxidant treatment repressed glucose- and palmitate-stimulated ROS generation and NFB translocation and decreased SAA and MCP-1 expression and monocyte che-motaxis. Silencing toll-like receptor-4 (TLR4) markedly reduced SAA and MCP-1 expression in response to palmitate but not glucose. DHA suppressed NFB translocation stimulated by both excess glucose and palmitate via a peroxisome prolifterator– activated receptor (PPAR) –dependent pathway. CONCLUSIONS—Excess glucose and SFAs regulate chemotac-tic factor expression by a mechanism that involves ROS genera-tion, NFB, and PPAR, and which is repressed by PUFAs. Certain SFAs, but not excess glucose, trigger chemotactic factor expression via a TLR4-dependent pathway. Diabetes 59:386

    Testing for growth hormone deficiency in adults: doing without growth hormone-releasing hormone

    No full text
    This article summarizes recent advances in testing for growth hormone deficiency (GHD) in adults, focusing on critical appraisal of existing growth hormone (GH) provocative tests as well as newer tests in development. The diagnosis of GHD can be challenging and often requires the use of GH provocative testing. The most widely validated of these is insulin-induced hypoglycemia (ITT), which requires close supervision and has significant contraindications and side-effects. The arginine-growth hormone-releasing hormone (GHRH) test had become widely used as a safe and accurate alternative to the ITT, but GHRH is currently unavailable for clinical use in the USA. On the basis of review of recent literature we recommend that in the absence of GHRH, glucagon stimulation testing should be the preferred alternative to ITT. Several synthetic GH secretagogues that mimic the gastric peptide ghrelin are currently in development and may become available for use in the diagnosis of GHD in the near future. Other GH provocative tests suitable for use in children lack adequate specificity for the diagnosis of GHD in adults. Due to the current unavailability of the arginine-GHRH test in the USA, when ITT is contraindicated or impractical we recommend the glucagon stimulation testing as the GH provocative test of choice. There remains a need for a simple, safe and accurate test for the diagnosis of GHD

    Diagnosis and treatment of growth hormone deficiency in adults

    No full text
    The availability of synthetic recombinant human growth hormone (GH) in potentially unlimited quantities since the 1980s has improved understanding of the many nonstatural effects of GH on metabolism, body composition, physical and psychological function, as well as the consequences of GH deficiency in adult life. Adult GH deficiency is now recognized as a distinct if nonspecific syndrome with considerable adverse health consequences. GH replacement therapy in lower doses than those used in children can reverse many of these abnormalities and restore functional capacities toward or even to normal; if dosed appropriately, GH therapy has few adverse effects. Although some doubts remain about possible long-term risks of childhood GH therapy, most registries of adult GH replacement therapy, albeit limited in study size and duration, have not shown an increased incidence of cancers or of cardiovascular morbidity or mortality

    Successful Treatment of Acromegaly and Associated Hypogonadism with First-Line Clomiphene Therapy

    No full text
    Clomiphene citrate (CC) has been reported as an effective add-on therapy to somatostatin analogs and dopamine agonists in patients with acromegaly accompanied by hypogonadism; its use as a single agent to treat acromegaly and associated hypogonadism following incomplete surgery has not been previously reported. We report the first case in which clomiphene was utilized as a single agent for the dual management of acromegaly and hypogonadism, not controlled by pituitary surgery alone. The treatment was well tolerated and proved to be effective after a process of treatment withdrawal and reintroduction. We propose that clomiphene may be considered as a cost-effective oral treatment option in select cases of hypogonadal acromegaly

    Adult Growth Hormone Deficiency – Benefits, Side Effects, and Risks of Growth Hormone Replacement

    Get PDF
    Deficiency of growth hormone (GH) in adults results in a syndrome characterized by decreased muscle mass and exercise capacity, increased visceral fat, impaired quality of life, unfavorable alterations in lipid profile and markers of cardiovascular risk, decrease in bone mass and integrity, and increased mortality. When dosed appropriately, GH replacement therapy (GHRT) is well tolerated, with a low incidence of side effects, and improves most of the alterations observed in GH deficiency (GHD); beneficial effects on mortality, cardiovascular events, and fracture rates, however, remain to be conclusively demonstrated. The potential of GH to act as a mitogen has resulted in concern over the possibility of increased de novo tumors or recurrence of pre-existing malignancies in individuals treated with GH. Though studies of adults who received GHRT in childhood have produced conflicting reports in this regard, long-term surveillance of adult GHRT has not demonstrated increased cancer risk or mortality
    corecore