38 research outputs found

    Both telomeric and non-telomeric DNA damage are determinants of mammalian cellular senescence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cellular senescence is a state reached by normal mammalian cells after a finite number of cell divisions and is characterized by morphological and physiological changes including terminal cell-cycle arrest. The limits on cell division imposed by senescence may play an important role in both organismal aging and in preventing tumorigenesis. Cellular senescence and organismal aging are both accompanied by increased DNA damage, seen as the formation of γ-H2AX foci (γ-foci), which may be found on uncapped telomeres or at non-telomeric sites of DNA damage. However, the relative importance of telomere- and non-telomere-associated DNA damage to inducing senescence has never been demonstrated. Here we present a new approach to determine accurately the chromosomal location of γ-foci and quantify the number of telomeric versus non-telomeric γ-foci associated with senescence in both human and mouse cells. This approach enables researchers to obtain accurate values and to avoid various possible misestimates inherent in earlier methods.</p> <p>Results</p> <p>Using combined immunofluorescence and telomere fluorescence <it>in situ </it>hybridization on metaphase chromosomes, we show that human cellular senescence is not solely determined by telomeric DNA damage. In addition, mouse cellular senescence is not solely determined by non-telomeric DNA damage. By comparing cells from different generations of telomerase-null mice with human cells, we show that cells from late generation telomerase-null mice, which have substantially short telomeres, contain mostly telomeric γ-foci. Most notably, we report that, as human and mouse cells approach senescence, all cells exhibit similar numbers of total γ-foci per cell, irrespective of chromosomal locations.</p> <p>Conclusion</p> <p>Our results suggest that the chromosome location of senescence-related γ-foci is determined by the telomere length rather than species differences <it>per se</it>. In addition, our data indicate that both telomeric and non-telomeric DNA damage responses play equivalent roles in signaling the initiation of cellular senescence and organismal aging. These data have important implications in the study of mechanisms to induce or delay cellular senescence in different species.</p

    ATM influences the efficiency of TCRβ rearrangement, subsequent TCRβ-dependent T cell development, and generation of the pre-selection TCRβ CDR3 repertoire.

    Get PDF
    Generation and resolution of DNA double-strand breaks is required to assemble antigen-specific receptors from the genes encoding V, D, and J gene segments during recombination. The present report investigates the requirement for ataxia telangiectasia-mutated (ATM) kinase, a component of DNA double-strand break repair, during TCRβ recombination and in subsequent TCRβ-dependent repertoire generation and thymocyte development. CD4(-)CD8(-) double negative stage 2/3 thymocytes from ATM-deficient mice have both an increased frequency of cells with DNA break foci at TCRβ loci and reduced Vβ-DJβ rearrangement. Sequencing of TCRβ complementarity-determining region 3 demonstrates that ATM-deficient CD4(+)CD8(+) double positive thymocytes and peripheral T cells have altered processing of coding ends for both in-frame and out-of-frame TCRβ rearrangements, providing the unique demonstration that ATM deficiency alters the expressed TCRβ repertoire by a selection-independent mechanism. ATMKO thymi exhibit a partial developmental block in DN cells as they negotiate the β-selection checkpoint to become double negative stage 4 and CD4(+)CD8(+) thymocytes, resulting in reduced numbers of CD4(+)CD8(+) cells. Importantly, expression of a rearranged TCRβ transgene substantially reverses this defect in CD4(+)CD8(+) cells, directly linking a requirement for ATM during endogenous TCRβ rearrangement to subsequent TCRβ-dependent stages of development. These results demonstrate that ATM plays an important role in TCRβ rearrangement, generation of the TCRβ CDR3 repertoire, and efficient TCRβ-dependent T cell development

    Downmodulation of Tumor Suppressor p53 by T Cell Receptor Signaling Is Critical for Antigen-Specific CD4+ T Cell Responses

    Get PDF
    SummaryAntigen specificity is critical in immune response and requires integration of antigen-specific signals with antigen-nonspecific signals such as those provided by cytokines. The mechanism integrating these pathways is incompletely understood. We report here that antigen-specific proliferative responses of CD4+ T cells required downmodulation of tumor suppressor p53. In the absence of T cell receptor (TCR) signal, IL-2 induced sustained increase in p53 protein, which prevented proliferative responses despite strong signaling through the IL-2 receptor. In contrast, TCR signaling resulted in early termination of p53 protein expression by decreasing p53 mRNA as well as strong transcriptional induction of the p53-regulating protein Mdm2. Downmodulation of p53 in response to antigen stimulation was in fact critical for antigen-specific T cell proliferation, and preventing p53 degradation by inhibiting Mdm2 resulted in sustained p53 protein and prevented antigen-specific T cell proliferation. It is thus termination of p53 by TCR signaling that allows proliferative responses, enforcing antigen specificity
    corecore