333 research outputs found

    Not So Fast: Cultivating miRs as Kinks in the Chain of the Cell Cycle.

    Get PDF
    In this issue of Cancer Cell, Hydbring and colleagues define a novel class of microRNAs (miRNAs), deemed cell-cycle-targeting miRNAs, that target several cyclins/CDKs, reduce tumor cell growth, and induce apoptosis. These miRNAs effectively suppressed chemoresistant patient-derived xenograft growth in vivo, and efficacy could be prospectively predicted with an expression-based algorithm

    Hormone whodunit: clues for solving the case of intratumor androgen production.

    Get PDF
    One of the key mechanisms by which prostate cancer cells evade hormone therapy is through intratumor testosterone production. New evidence points toward androstenedione as a potential precursor of intratumor androgen production and furthers nomination of AKR1C3 as a therapeutic target in advanced disease. Clin Cancer Res; 20(21); 5343-5. ©2014 AACR

    The cyclin D1b splice variant: an old oncogene learns new tricks

    Get PDF
    The function of cyclin D1 as a positive regulator of the cell cycle and proto-oncogene has been well established. Cyclin D1 elicits its pro-proliferative function early in G1 phase, through its ability to activate cyclin dependent kinase (CDK) 4 or 6. Active CDK4/6-cyclin D1 complexes phosphorylate substrates that are critical for modulating G1 to S phase progression, and in this manner promote cellular proliferation. Emerging data from a number of model systems revealed that cyclin D1 also holds multiple, kinase-independent cellular functions. First, cyclin D1 assists in sequestering CDK inhibitors (e.g. p27(kip1)), thus bolstering late G1 CDK activity. Second, cyclin D1 is known to bind and modulate the action of several transcription factors that hold significance in human cancers. Thus, cyclin D1 impinges on several distinct pathways that govern cancer cell proliferation. Although intragenic somatic mutation of cyclin D1 in human disease is rare, cyclin D1 gene translocation, amplification and/or overexpression are frequent events in selected tumor types. Additionally, a polymorphism in the cyclin D1 locus that may affect splicing has been implicated in increased cancer risk or poor outcome. Recent functional analyses of an established cyclin D1 splice variant, cyclin D1b, revealed that the cyclin D1b isoform harbors unique activities in cancer cells. Here, we review the literature implicating cyclin D1b as a mediator of aberrant cellular proliferation in cancer. The differential roles of cyclin D1 and the cyclin D1b splice variant in prostate cancer will be also be addressed, wherein divergent functions have been linked to altered proliferative control

    Beyond DNA repair: DNA-PK function in cancer.

    Get PDF
    UNLABELLED: The DNA-dependent protein kinase (DNA-PK) is a pivotal component of the DNA repair machinery that governs the response to DNA damage, serving to maintain genome integrity. However, the DNA-PK kinase component was initially isolated with transcriptional complexes, and recent findings have illuminated the impact of DNA-PK-mediated transcriptional regulation on tumor progression and therapeutic response. DNA-PK expression has also been correlated with poor outcome in selected tumor types, further underscoring the importance of understanding its role in disease. Herein, the molecular and cellular consequences of DNA-PK are considered, with an eye toward discerning the rationale for therapeutic targeting of DNA-PK. SIGNIFICANCE: Although DNA-PK is classically considered a component of damage response, recent findings illuminate damage-independent functions of DNA-PK that affect multiple tumor-associated pathways and provide a rationale for the development of novel therapeutic strategies

    AR function in promoting metastatic prostate cancer.

    Get PDF
    Prostate cancer (PCa) remains a leading cause of cancer-related death in the USA. While localized lesions are effectively treated through radical prostatectomy and/or radiation therapy, treatment for metastatic disease leverages the addiction of these tumors on the androgen receptor (AR) signaling axis for growth and disease progression. Though initially effective, tumors resistant to AR-directed therapeutics ultimately arise (a stage of the disease known as castration-resistant prostate cancer) and are responsible for PCa-specific mortality. Importantly, an abundance of clinical and preclinical evidence strongly implicates AR signaling cascades in the development of metastatic disease in both early and late stages, and thus a concerted effort has been made to delineate the AR-specific programs that facilitate progression to metastatic PCa. A multitude of downstream AR targets as well as critical AR cofactors have been identified which impinge upon both the AR pathway as well as associated metastatic phenotypes. This review will highlight the functional significance of these pathways to disseminated disease and define the molecular underpinnings behind these unique, AR-driven, metastatic signatures

    DNA-PKcs: A Targetable Protumorigenic Protein Kinase.

    Get PDF
    DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a pleiotropic protein kinase that plays critical roles in cellular processes fundamental to cancer. DNA-PKcs expression and activity are frequently deregulated in multiple hematologic and solid tumors and have been tightly linked to poor outcome. Given the potentially influential role of DNA-PKcs in cancer development and progression, therapeutic targeting of this kinase is being tested in preclinical and clinical settings. This review summarizes the latest advances in the field, providing a comprehensive discussion of DNA-PKcs functions in cancer and an update on the clinical assessment of DNA-PK inhibitors in cancer therapy

    Hijacking the Chromatin Remodeling Machinery: Impact of SWI/SNF Perturbations in Cancer

    Get PDF
    There is increasing evidence that alterations in chromatin remodeling play a significant role in human disease. The SWI/SNF chromatin remodeling complex family mobilizes nucleosomes and functions as a master regulator of gene expression and chromatin dynamics whose functional specificity is driven by combinatorial assembly of a central ATPase and association with 10-12 unique subunits. While the biochemical consequence of SWI/SNF in model systems has been extensively reviewed, the present article focuses on the evidence linking SWI/SNF perturbations to cancer initiation and tumor progression in human disease

    Detection of activating estrogen receptor gene (ESR1) mutations in single circulating tumor cells

    Get PDF
    Purpose: Early detection is essential for treatment plans before onset of metastatic disease. Our purpose was to demonstrate feasibility to detect and monitor estrogen receptor 1 (ESR1) gene mutations at the single circulating tumor cell (CTC) level in metastatic breast cancer (MBC). Experimental Design: We used a CTC molecular characterization approach to investigate heterogeneity of 14 hotspot mutations in ESR1 and their correlation with endocrine resistance. Combining the CellSearch and DEPArray technologies allowed recovery of 71 single CTCs and 12 WBC from 3 ER-positive MBC patients. Forty CTCs and 12 WBC were subjected to whole genome amplification by MALBAC and Sanger sequencing. Results: Among 3 selected patients, 2 had an ESR1 mutation (Y537). One showed two different ESR1 variants in a single CTC and another showed loss of heterozygosity. All mutations were detected in matched cell-free DNA (cfDNA). Furthermore, one had 2 serial blood samples analyzed and showed changes in both cfDNA and CTCs with emergence of mutations in ESR1 (Y537S and T570I), which has not been reported previously. Conclusions: CTCs are easily accessible biomarkers to monitor and better personalize management of patients with previously demonstrated ER-MBC who are progressing on endocrine therapy. We showed that single CTC analysis can yield important information on clonal heterogeneity and can be a source of discovery of novel and potential driver mutations. Finally, we also validate a workflow for liquid biopsy that will facilitate early detection of ESR1 mutations, the emergence of endocrine resistance and the choice of further target therapy. ©2017 AACR

    Chromatin to Clinic: The Molecular Rationale for PARP1 Inhibitor Function.

    Get PDF
    Poly(ADP-ribose) polymerase 1 (PARP1) inhibitors were recently shown to have potential clinical impact in a number of disease settings, particularly as related to cancer therapy, treatment for cardiovascular dysfunction, and suppression of inflammation. The molecular basis for PARP1 inhibitor function is complex, and appears to depend on the dual roles of PARP1 in DNA damage repair and transcriptional regulation. Here, the mechanisms by which PARP-1 inhibitors elicit clinical response are discussed, and strategies for translating the preclinical elucidation of PARP-1 function into advances in disease management are reviewed
    • …
    corecore