108 research outputs found

    Atmospheric electrification in the Solar System

    Full text link
    Atmospheric electrification is not a purely terrestrial phenomenon: all Solar System planetary atmospheres become slightly electrified by cosmic ray ionisation. There is evidence for lightning on Jupiter, Saturn, Uranus and Neptune, and it appears likely to exist on Mars, Venus and Titan. Atmospheric electricity has controversially been implicated in climate on Earth; here, a comparative approach is employed to review the role of electrification in the atmospheres of other planets and their moons. This paper reviews planetary atmospheric electricity including ionisation and ion-aerosol interactions. The conditions necessary for a global electric circuit, and the likelihood of meeting these conditions in other planetary atmospheres are briefly discussed. Atmospheric electrification could be important throughout the Solar System, particularly at the outer planets which receive little solar radiation, increasing the significance of electrical forces. Nucleation onto atmospheric ions has been predicted to affect the evolution and lifetime of haze layers on Titan, Neptune, and Triton. Atmospheric electrical processes on Titan, pre-Huygens, are summarised. Closer to Earth, heating from solar radiation dominates planetary meteorology; however Mars may have a global circuit based on electrical discharges from dust storms. There is a need for direct measurements of planetary atmospheric electrification, in particular on Mars, to assess the risk for future missions. Theoretical understanding could be increased by cross-disciplinary work to modify and update models and parameterisations initially developed for specific planetary atmospheres to make them more broadly applicable.Comment: Submitted to Surveys in Geophysics. Abstract shown here is slightly abridged for brevit

    Remote sensing of cloud base charge

    Get PDF
    Layer clouds are abundant in the Earth's atmosphere. Such clouds do not become sufficiently strongly charged to generate lightning, but they show weak charging along the upper and lower cloud boundaries where there is a conductivity transition. Cloud edge charging has recently been observed using balloon-carried electrometers. Measurement of cloud boundary charging without balloons is shown to be possible here for low altitude (<1km) charged cloud bases, through combining their effect on the surface electric field with laser time of flight cloud base height measurements, and the application of simple electrostatic models.Comment: Proceedings of the Electrostatics Society of America conference, Ottawa, June 201

    Electrical charging of ash in Icelandic volcanic plumes

    Full text link
    The existence of volcanic lightning and alteration of the atmospheric potential gradient in the vicinity of near-vent volcanic plumes provides strong evidence for the charging of volcanic ash. More subtle electrical effects are also visible in balloon soundings of distal volcanic plumes. Near the vent, some proposed charging mechanisms are fractoemission, triboelectrification, and the so-called "dirty thunderstorm" mechanism, which is where ash and convective clouds interact electrically to enhance charging. Distant from the vent, a self-charging mechanism, probably triboelectrification, has been suggested to explain the sustained low levels of charge observed on a distal plume. Recent research by Houghton et al. (2013) linked the self-charging of volcanic ash to the properties of the particle size distribution, observing that a highly polydisperse ash distribution would charge more effectively than a monodisperse one. Natural radioactivity in some volcanic ash could also contribute to self-charging of volcanic plumes. Here we present laboratory measurements of particle size distributions, triboelectrification and radioactivity in ash samples from the Gr\'{i}msv\"{o}tn and Eyjafjallaj\"{o}kull volcanic eruptions in 2011 and 2010 respectively, and discuss the implications of our findings.Comment: XV Conference on Atmospheric Electricity, 15-20 June 2014, Norman, Oklahoma, US

    Lord Kelvin’s atmospheric electricity measurements

    Get PDF
    Lord Kelvin (William Thomson) made important contributions to the study of atmospheric elec- tricity during a brief but productive period from 1859–1861. By 1859 Kelvin had recognised the need for “incessant recording” of atmospheric electrical parameters, and responded by inventing both the water dropper equaliser for measuring the atmospheric potential gradient (PG), and photographic data logging. The water dropper equaliser was widely adopted internationally and is still in use today. Following theoretical consid- erations of electric field distortion by local topography, Kelvin developed a portable electrometer, using it to investigate the PG on the Scottish island of Arran. During these environmental measurements, Kelvin may have unwittingly detected atmospheric PG changes during solar activity in August / September 1859 associated with the “Carrington event”, which is interesting in the context of his later statements that solar magnetic influ- ence on the Earth was impossible. Kelvin’s atmospheric electricity work presents an early representative study in quantitative environmental physics, through the application of mathematical principles to an environmental problem, the design and construction of bespoke instrumentation for real world measurements and recognising the limitations of the original theoretical view revealed by experimental wor

    Miniaturized atmospheric ionization detector

    Get PDF
    A small scintillator-based detector for atmospheric ionization measurements has been developed, partly in response to a need for better ionization data in the weather-forming regions of the atmosphere and partly with the intention of producing a commercially available device. The device can measure both the count rate and energy of atmospheric ionizing radiation. Here we report results of a test flight over the UK in December 2017 where the detector was flown with two Geiger counters on a meteorological radiosonde. The count rate profile with height was consistent both with the Geigers and with previous work. The energy of incoming ionizing radiation increased substantially with altitude.Comment: Proc 18th Conference on Atmospheric Electricity, Nara, Japan, June 201

    Electrical processes in planetary atmospheres

    Full text link
    Lightning is common throughout the Solar System, and charging of particles occurs in all atmospheres due to ionization from galactic cosmic rays. Here, some electrical processes relevant to the atmosphere of Venus are outlined and discussed in a comparative planetology context.Comment: Proceedings of the Electrostatics Society of America Conference, Ottawa, June 201

    Response and Resistance to Paradox-Breaking BRAF Inhibitor in Melanomas

    Get PDF
    FDA-approved BRAF inhibitors produce high response rates and improve overall survival in patients with BRAF V600E/K-mutant melanoma, but are linked to pathologies associated with paradoxical ERK1/2 activation in wild-type BRAF cells. To overcome this limitation, a next-generation paradox-breaking RAF inhibitor (PLX8394) has been designed. Here, we show that by using a quantitative reporter assay, PLX8394 rapidly suppressed ERK1/2 reporter activity and growth of mutant BRAF melanoma xenografts. Ex vivo treatment of xenografts and use of a patient-derived explant system (PDeX) revealed that PLX8394 suppressed ERK1/2 signaling and elicited apoptosis more effectively than the FDA-approved BRAF inhibitor, vemurafenib. Furthermore, PLX8394 was efficacious against vemurafenibresistant BRAF splice variant-expressing tumors and reduced splice variant homodimerization. Importantly, PLX8394 did not induce paradoxical activation of ERK1/2 in wild-type BRAF cell lines or PDeX. Continued in vivo dosing of xenografts with PLX8394 led to the development of acquired resistance via ERK1/2 reactivation through heterogeneous mechanisms; however, resistant cells were found to have differential sensitivity to ERK1/2 inhibitor. These findings highlight the efficacy of a paradox-breaking selective BRAF inhibitor and the use of PDeX system to test the efficacy of therapeutic agents. © 2017 American Association for Cancer Research
    • 

    corecore