5 research outputs found

    Substitutions in SARS-CoV-2 Mpro Selected by Protease Inhibitor Boceprevir Confer Resistance to Nirmatrelvir

    Full text link
    Nirmatrelvir, which targets the SARS-CoV-2 main protease (Mpro), is the first-in-line drug for prevention and treatment of severe COVID-19, and additional Mpro inhibitors are in development. However, the risk of resistance development threatens the future efficacy of such direct-acting antivirals. To gain knowledge on viral correlates of resistance to Mpro inhibitors, we selected resistant SARS-CoV-2 under treatment with the nirmatrelvir-related protease inhibitor boceprevir. SARS-CoV-2 selected during five escape experiments in VeroE6 cells showed cross-resistance to nirmatrelvir with up to 7.3-fold increased half-maximal effective concentration compared to original SARS-CoV-2, determined in concentration–response experiments. Sequence analysis revealed that escape viruses harbored Mpro substitutions L50F and A173V. For reverse genetic studies, these substitutions were introduced into a cell-culture-infectious SARS-CoV-2 clone. Infectivity titration and analysis of genetic stability of cell-culture-derived engineered SARS-CoV-2 mutants showed that L50F rescued the fitness cost conferred by A173V. In the concentration–response experiments, A173V was the main driver of resistance to boceprevir and nirmatrelvir. Structural analysis of Mpro suggested that A173V can cause resistance by making boceprevir and nirmatrelvir binding less favorable. This study contributes to a comprehensive overview of the resistance profile of the first-in-line COVID-19 treatment nirmatrelvir and can thus inform population monitoring and contribute to pandemic preparedness

    Nirmatrelvir-resistant SARS-CoV-2 variants with high fitness in an infectious cell culture system

    Full text link
    The oral protease inhibitor nirmatrelvir is of key importance for prevention of severe coronavirus disease 2019 (COVID-19). To facilitate resistance monitoring, we studied severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) escape from nirmatrelvir in cell culture. Resistant variants harbored combinations of substitutions in the SARS-CoV-2 main protease (Mpro). Reverse genetics revealed that E166V and L50F + E166V conferred high resistance in infectious culture, replicon, and Mpro systems. While L50F, E166V, and L50F + E166V decreased replication and Mpro activity, L50F and L50F + E166V variants had high fitness in the infectious system. Naturally occurring L50F compensated for fitness cost of E166V and promoted viral escape. Molecular dynamics simulations revealed that E166V and L50F + E166V weakened nirmatrelvir-Mpro binding. Polymerase inhibitor remdesivir and monoclonal antibody bebtelovimab retained activity against nirmatrelvir-resistant variants, and combination with nirmatrelvir enhanced treatment efficacy compared to individual compounds. These findings have implications for monitoring and ensuring treatments with efficacy against SARS-CoV-2 and emerging sarbecoviruses

    An inactivated SARS-CoV-2 vaccine based on a Vero cell culture-adapted high-titer virus confers cross-protection in small animals

    Full text link
    Abstract Rapidly waning immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires continued global access to affordable vaccines. Globally, inactivated SARS-CoV-2 vaccines have been widely used during the SARS-CoV-2 pandemic. In this proof-of-concept study we adapted an original-D614G SARS-CoV-2 virus to Vero cell culture as a strategy to enhance inactivated vaccine manufacturing productivity. A passage 60 (P60) virus showed enhanced fitness and 50-fold increased virus yield in a bioreactor compared to the original-D614G virus. It further remained susceptible to neutralization by plasma from SARS-CoV-2 vaccinated and convalescent individuals, suggesting exposure of relevant epitopes. Monovalent inactivated P60 and bivalent inactivated P60/omicron BA.1 vaccines induced neutralizing responses against original-D614G and BA.1 viruses in mice and hamsters, demonstrating that the P60 virus is a suitable vaccine antigen. Antibodies further cross-neutralized delta and BA.5 viruses. Importantly, the inactivated P60 vaccine protected hamsters against disease upon challenge with original-D614G or BA.1 virus, with minimal lung pathology and lower virus loads in the upper and lower airways. Antigenicity of the P60 virus was thus retained compared to the original virus despite the acquisition of cell culture adaptive mutations. Consequently, cell culture adaptation may be a useful approach to increase yields in inactivated vaccine antigen production
    corecore