9 research outputs found

    Obtaining the fine-grained silicon carbide, used in the synthesis of construction ceramics

    Get PDF
    Silicon carbide is used in the production of construction and temperature-resistant goods, capable of withstanding high mechanical and thermal loads. During recent times, silicon carbide has been frequently used in the electronics industry. Since sintered silicon carbide has increasingly been used as a replacement for metal components of various devices, the process of obtaining compact goods from silicon powder has become the defining factor in the technology used for its synthesis. The selection of conditions in which the sintering is conducted depends on granulometric structure, the form and the surface condition of the initial powder. The work consists of the synthesis of silicon carbide powder using the purified form of metallurgical silicon powder and soot. The qualities of testing samples were studied, where silicon carbide was obtained using established technology, from mechanically activated elementary, fine-grained silicon and soot, by pyrolytic synthesis. It was demonstrated that synthesis produces highly pure silicon carbide powder, (Ξ±- and Ξ²-phases) with a granulometric composition that allowed subsequent sintering to produce high quality compact goods. It was established that the content of silica in synthesized silicon carbide powder does not exceed 1-2% of the total mass

    Coal layer under microwave heating: analytical study under mixed boundary conditions I and II of the genus

    No full text
    The relevance of the work is due to the prospect of the use of microwave radiation in the energy technologies of fuel use at the stages of preparation of solid fuels for coal-fired incineration, including drying and heat treatment. A few well-known results of laboratory experiments indicate structural effects, resulting in increased reactivity and reduction of unburnt fuel. Objective: to obtain an analytical expression for the temperature field in the coal array required for parametric analysis of technological conditions of microwave exposure. Methods: construction of analytically rigorous heat transfer problems, the solution of which is usually possible only in conditions of significant simplifications. If adopted by the constancy of the electrical and technological properties of coal physical picture of the process is determined by the incident on the coal layer of a plane electromagnetic wave that generates internal heat source of Buger law. The energy equation in the form of Fourier is solved independently of Maxwell equations. In this formulation the solution of allocated tasks is carried out by the method of integral transformation of Laplace. Results. The derived analytical solutions of temperature fields are received with mixed boundary conditions with fairly arbitrary changes in time and temperature of a surface flux density of fire on the border. For some special cases on this basis can be obtained an extensive series of simplified solutions available for parametric analysis of the rationale of optimal control parameters of the technology demanded by the engineering practice in project development and operation of microwave systems for processing of solid fuels in the energy sector

    Coal layer under microwave heating: analytical study under mixed boundary conditions I and II of the genus

    No full text
    The relevance of the work is due to the prospect of the use of microwave radiation in the energy technologies of fuel use at the stages of preparation of solid fuels for coal-fired incineration, including drying and heat treatment. A few well-known results of laboratory experiments indicate structural effects, resulting in increased reactivity and reduction of unburnt fuel. Objective: to obtain an analytical expression for the temperature field in the coal array required for parametric analysis of technological conditions of microwave exposure. Methods: construction of analytically rigorous heat transfer problems, the solution of which is usually possible only in conditions of significant simplifications. If adopted by the constancy of the electrical and technological properties of coal physical picture of the process is determined by the incident on the coal layer of a plane electromagnetic wave that generates internal heat source of Buger law. The energy equation in the form of Fourier is solved independently of Maxwell equations. In this formulation the solution of allocated tasks is carried out by the method of integral transformation of Laplace. Results. The derived analytical solutions of temperature fields are received with mixed boundary conditions with fairly arbitrary changes in time and temperature of a surface flux density of fire on the border. For some special cases on this basis can be obtained an extensive series of simplified solutions available for parametric analysis of the rationale of optimal control parameters of the technology demanded by the engineering practice in project development and operation of microwave systems for processing of solid fuels in the energy sector

    Heat treatment of the coal layer by microwave energy: an analytical study in conditions of heat removal of II and III order

    No full text
    Relevance of the research is related to the necessity of scientific study of microwave exposure technology parameters for coal, especially when drying, at thermal treatment, burning intensification and others. Experiments show that use of microwave radiation help reduce harmful emissions from coal burning, increase energy efficiency, reduce process time, etc. For optimal conditions of microwave treatment it is very popular to search for theoretical approaches, in particular, the engineering practice requires analytical solutions for heat treatment of coal array, which was done in the study. The aim of the research is to develop strict analytic solutions of the problems of coal layer heating by microwave radiation under the heat removal of the II and III order, which allow carrying out the parametric analysis of microwave exposure and searching for the most advantageous modes of heating coal layer. Methods. The tasks of coal bed heating by microwave radiation with boundary conditions of the II and III order were set with a number of simplifications, such as persistence of thermal and electrical properties of the material, they are isotropy, one-dimensionality. This physical process itself is plane electromagnetic wave energy absorption and formation of heat sources in coal array, modeled on the Bouguer law. The energy equation in the form of Fourier in this case is considered independently of the Maxwell equations of electrodynamics. A new dependent variable was determined. It modifies the boundary conditions into homogeneous, and simplifies the search of solutions. As a result, the basic system of equations is divided into two subsystems, and the final solution was found making a superposition of these two sub-tasks.Β Results. The authors have found analytically strong dependences of temperature distribution over the cross section and time for carbon bed heated by microwave radiation, under heat removal of II and III order of boundary surfaces. These solutions are the basis for optimum parameters of microwave heating technology, a tool to reduce the spread of temperature field on the desired temperature distribution within the layer. They help determine quickly: maximum temperature inside a coal array, coordinates of its location, thermos-destructive voltage, limits of discharged heat fluxes and other

    Coal layer under microwave heating: analytical study under mixed boundary conditions I and II of the genus

    No full text
    ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ€Π°Π±ΠΎΡ‚Ρ‹ обусловлСна ΠΏΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ примСнСния Π‘Π’Π§-излучСния Π² тСхнологиях энСргСтичСского Ρ‚ΠΎΠΏΠ»ΠΈΠ²ΠΎΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΡ Π½Π° стадиях ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ Ρ‚Π²Π΅Ρ€Π΄ΠΎΠ³ΠΎ Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° ΠΊ ΠΏΡ‹Π»Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΌΡƒ сТиганию, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ ΠΏΠΎΠ΄ΡΡƒΡˆΠΊΡƒ ΠΈ ΠΏΡ€Π΅Π΄Π³ΠΎΡ€Π΅Π»ΠΎΡ‡Π½ΡƒΡŽ Ρ‚Π΅Ρ€ΠΌΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΡƒ. НСмногочислСнныС извСстныС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Ρ… экспСримСнтов ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎ Π½Π°Π»ΠΈΡ‡ΠΈΠΈ структурных эффСктов, приводящих ΠΊ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ способности ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡŽ Π½Π΅Π΄ΠΎΠΆΠΎΠ³Π° Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΊ ΡΠΎΠΊΡ€Π°Ρ‰Π΅Π½ΠΈΡŽ Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ токсинов. ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ аналитичСского выраТСния для Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠ³ΠΎ поля Π² ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΌ массивС, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ³ΠΎ для парамСтричСского Π°Π½Π°Π»ΠΈΠ·Π° тСхнологичСских условий ΠΌΠΈΠΊΡ€ΠΎΠ²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ³ΠΎ воздСйствия. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ исслСдования. ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ аналитичСски строгих Π·Π°Π΄Π°Ρ‡ тСплопСрСноса, Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ…, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² условиях сущСствСнных ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½ΠΈΠΉ. ΠŸΡ€ΠΈ принятом постоянствС элСктрофизичСских ΠΈ тСхнологичСских свойств угля физичСская ΠΊΠ°Ρ€Ρ‚ΠΈΠ½Π° процСсса опрСдСляСтся ΠΏΠ°Π΄Π°ΡŽΡ‰Π΅ΠΉ Π½Π° ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ слой плоской элСктромагнитной Π²ΠΎΠ»Π½ΠΎΠΉ, которая Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΠ΅Ρ‚ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠΉ источник Ρ‚Π΅ΠΏΠ»Π° ΠΏΠΎ Π·Π°ΠΊΠΎΠ½Ρƒ Π‘ΡƒΠ³Π΅Ρ€Π°. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ энСргии Π² Ρ„ΠΎΡ€ΠΌΠ΅ Π€ΡƒΡ€ΡŒΠ΅ Π² этом случаС рассматриваСтся нСзависимо ΠΎΡ‚ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ элСктродинамики МаксвСлла. Π’ Π΄Π°Π½Π½ΠΎΠΉ постановкС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ прСобразования Лапласа. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π’Ρ‹Π²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ аналитичСскиС Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΏΠΎ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹ΠΌ полям ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΏΡ€ΠΈ ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹Ρ… Π³Ρ€Π°Π½ΠΈΡ‡Π½Ρ‹Ρ… условиях с достаточно ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹ΠΌΠΈ измСнСниями Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΎΠ΄Π½ΠΎΠΉ повСрхности ΠΈ плотности ΠΏΠΎΡ‚ΠΎΠΊΠ° Π½Π° ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠΉ Π³Ρ€Π°Π½ΠΈΡ†Π΅. Для ряда частных случаСв Π½Π° этой основС ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ ΠΎΠ±ΡˆΠΈΡ€Π½ΠΎΠΉ ряд ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ, доступных для парамСтричСского Π°Π½Π°Π»ΠΈΠ·Π°, с обоснованиСм ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ, вострСбованных ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½ΠΎΠΉ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠΎΠΉ ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π½ΠΎΠΉ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΈ эксплуатации Π‘Π’Π§-систСм ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Ρ‚Π²Π΅Ρ€Π΄ΠΎΠ³ΠΎ Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° Π² энСргСтикС, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π² ΡƒΠ³Π»Π΅Ρ…ΠΈΠΌΠΈΠΈ.The relevance of the work is due to the prospect of the use of microwave radiation in the energy technologies of fuel use at the stages of preparation of solid fuels for coal-fired incineration, including drying and heat treatment. A few well-known results of laboratory experiments indicate structural effects, resulting in increased reactivity and reduction of unburnt fuel. Objective: to obtain an analytical expression for the temperature field in the coal array required for parametric analysis of technological conditions of microwave exposure. Methods: construction of analytically rigorous heat transfer problems, the solution of which is usually possible only in conditions of significant simplifications. If adopted by the constancy of the electrical and technological properties of coal physical picture of the process is determined by the incident on the coal layer of a plane electromagnetic wave that generates internal heat source of Buger law. The energy equation in the form of Fourier is solved independently of Maxwell equations. In this formulation the solution of allocated tasks is carried out by the method of integral transformation of Laplace. Results. The derived analytical solutions of temperature fields are received with mixed boundary conditions with fairly arbitrary changes in time and temperature of a surface flux density of fire on the border. For some special cases on this basis can be obtained an extensive series of simplified solutions available for parametric analysis of the rationale of optimal control parameters of the technology demanded by the engineering practice in project development and operation of microwave systems for processing of solid fuels in the energy sector

    Processes of electrostatic separation and flotation in the beneficiation of ilmenite ores from Vietnam and chemical processing of the obtained concentrates

    No full text
    ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ исслСдования опрСдСляСтся созданиСм ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈΠ°Π»ΡŒΠ½ΠΎ Π½ΠΎΠ²ΠΎΠ³ΠΎ способа синтСза Ρ‚ΠΈΡ‚Π°Π½ΠΎΠ²Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ² высокой стСпСни чистоты ΠΈΠ· ΠΈΠ»ΡŒΠΌΠ΅Π½ΠΈΡ‚ΠΎΠ²Ρ‹Ρ… Ρ€ΡƒΠ΄ мСстороТдСний Π’ΡŒΠ΅Ρ‚Π½Π°ΠΌΠ°, содСрТащих Π² тяТСлой Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ смСсь ΠΈΠ»ΡŒΠΌΠ΅Π½ΠΈΡ‚Π° с Ρ€ΡƒΡ‚ΠΈΠ»ΠΎΠΌ. Π­Ρ‚ΠΎ ΠΎΠ΄Π½ΠΎ ΠΈΠ· ΠΏΡ€ΠΈΠΎΡ€ΠΈΡ‚Π΅Ρ‚Π½Ρ‹Ρ… Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΉ комплСксного развития мСстороТдСний Ρ€Π΅Π΄ΠΊΠΈΡ… ΠΈ Ρ€Π΅Π΄ΠΊΠΎΠ·Π΅ΠΌΠ΅Π»ΡŒΠ½Ρ‹Ρ… элСмСнтов Π²ΠΎ Π’ΡŒΠ΅Ρ‚Π½Π°ΠΌΠ΅. ЦСль: Π²Ρ‹Π±ΠΎΡ€ условий, ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ провСдСния тСхнологичСских ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ ΠΏΠΎ ΠΎΠ±ΠΎΠ³Π°Ρ‰Π΅Π½ΠΈΡŽ Π²ΡŒΠ΅Ρ‚Π½Π°ΠΌΡΠΊΠΈΡ… ΠΈΠ»ΡŒΠΌΠ΅Π½ΠΈΡ‚ΠΎΠ²Ρ‹Ρ… Ρ€ΡƒΠ΄ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ ΠΈΡ… химичСской ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ с ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ΠΌ высокочистого Ρ‚ΠΈΡ‚Π°Π½Π°. ΠžΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹: ΠΈΠ»ΡŒΠΌΠ΅Π½ΠΈΡ‚ΠΎΠ²Π°Ρ Ρ€ΡƒΠ΄Π° мСстороТдСния Π₯Π° Винь (Π’ΡŒΠ΅Ρ‚Π½Π°ΠΌ) с высоким содСрТаниСм оксидов Ρ‚ΠΈΡ‚Π°Π½Π°, ΠΆΠ΅Π»Π΅Π·Π°, циркония ΠΈ Π½ΠΈΠ·ΠΊΠΈΠΌ содСрТаниСм крСмния, алюминия, Ρ€Π΅Π΄ΠΊΠΎΠ·Π΅ΠΌΠ΅Π»ΡŒΠ½Ρ‹Ρ… элСмСнтов, ванадия, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΠ»ΡŒΠΌΠ΅Π½ΠΈΡ‚ΠΎΠ²Ρ‹ΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ‚, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ обогащСния исходной ΠΈΠ»ΡŒΠΌΠ΅Π½ΠΈΡ‚ΠΎΠ²ΠΎΠΉ Ρ€ΡƒΠ΄Ρ‹. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹: Π² процСссС обогащСния - элСктростатичСская сСпарация, флотация, использованиС ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², Π°ΠΊΡ‚ΠΈΠ²Π°Ρ‚ΠΎΡ€ΠΎΠ² ΠΈ дСпрСссоров, добавляСмых ΠΊ Ρ„Π»ΠΎΡ‚ΠΎΡ€Π΅Π°Π³Π΅Π½Ρ‚Π°ΠΌ; ΠΏΡ€ΠΈ элСктролитичСском синтСзС Ρ‚ΠΈΡ‚Π°Π½Π° - ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ расплава Π² Π²ΠΈΠ΄Π΅ смСси Ρ„Ρ‚ΠΎΡ€ΠΈΠ΄ΠΎΠ² лития, натрия ΠΈ калия, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΡ… минимальной Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΎΠΉ плавлСния, с Π΄ΠΎΠ±Π°Π²ΠΊΠΎΠΉ Ρ‚Π΅Ρ‚Ρ€Π°Ρ„Ρ‚ΠΎΡ€ΠΈΠ΄Π° Ρ‚ΠΈΡ‚Π°Π½Π°; Π²Ρ‹Π±ΠΎΡ€ условий запуска элСктролизСра, ΠΊΠ°Ρ‚ΠΎΠ΄Π½ΠΎΠΉ плотности Ρ‚ΠΎΠΊΠ°, силы Ρ‚ΠΎΠΊΠ° ΠΈ напряТСния для осаТдСния Ρ‚ΠΈΡ‚Π°Π½Π° Π½Π° ΠΊΠ°Ρ‚ΠΎΠ΄Π΅; исслСдованиС ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… условий выдСлСния Ρ‚ΠΈΡ‚Π°Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° ΠΏΡ€ΠΈ Π½ΠΈΠ·ΠΊΠΈΡ… Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ… с использованиСм Π±Π΅Π·Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ Ρ„Ρ‚ΠΎΡ€ΠΎΠ²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π°. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Показана ΠΏΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ использования ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² элСктростатичСской сСпарации ΠΈ Ρ„Π»ΠΎΡ‚Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΈ ΠΎΠ±ΠΎΠ³Π°Ρ‰Π΅Π½ΠΈΠΈ Π²ΡŒΠ΅Ρ‚Π½Π°ΠΌΡΠΊΠΈΡ… ΠΈΠ»ΡŒΠΌΠ΅Π½ΠΈΡ‚ΠΎΠ²Ρ‹Ρ… Ρ€ΡƒΠ΄ мСстороТдСния Π₯Π° Винь. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ ΠΈΠ»ΡŒΠΌΠ΅Π½ΠΈΡ‚ΠΎΠ²Ρ‹ΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ‚ с содСрТаниСм диоксида Ρ‚ΠΈΡ‚Π°Π½Π° Π±ΠΎΠ»Π΅Π΅ 50 %. ΠžΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½Ρ‹ прСимущСства использования ΠΌΠ΅Ρ‚ΠΎΠ΄Π° прямого фторирования ΠΈΠ»ΡŒΠΌΠ΅Π½ΠΈΡ‚ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ‚Π° элСмСнтным Ρ„Ρ‚ΠΎΡ€ΠΎΠΌ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π΅Π³ΠΎ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΡ‚ΡŒ ΠΏΠΎΠ»Π½ΠΎΡ‚Ρƒ Π΅Π³ΠΎ вскрытия ΠΈ ΠΎΡ‚Π΄Π΅Π»ΠΈΡ‚ΡŒ Π»Π΅Ρ‚ΡƒΡ‡ΠΈΠ΅ Ρ„Ρ‚ΠΎΡ€ΠΈΠ΄Ρ‹ Ρ‚ΠΈΡ‚Π°Π½Π°, ниобия, ванадия ΠΈ крСмния ΠΎΡ‚ Π½Π΅Π»Π΅Ρ‚ΡƒΡ‡ΠΈΡ… - Ρ„Ρ‚ΠΎΡ€ΠΈΠ΄ΠΎΠ² ΠΆΠ΅Π»Π΅Π·Π°, циркония, гафния ΠΈ цСрия. Π­Ρ‚ΠΎ позволяСт ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ число стадий ΠΏΡ€ΠΈ дальнСйшСм ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ TiF4 Π² качСствС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° для получСния Ρ‚ΠΈΡ‚Π°Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡ€ΠΎΡˆΠΊΠ°. ΠŸΡ€ΠΈ элСктролитичСском ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠΈ Ρ‚ΠΈΡ‚Π°Π½Π° обоснована Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ примСнСния расплава Ρ„Ρ‚ΠΎΡ€ΠΈΠ΄Π½Ρ‹Ρ… солСй лития, натрия ΠΈ калия, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ… состав: LiF (0,465 М)-NaF (0,115 М)-KF (0,42 М), ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰Π΅Π³ΠΎ минимальной Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΎΠΉ плавлСния (454 Β°Π‘) ΠΈ ΠΏΡ€Π΅Π΄Π΅Π»Π°ΠΌΠΈ измСнСния ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ K2TiF6 (25-30 %). ΠŸΡ€ΠΈ этом Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ плотности Ρ‚ΠΎΠΊΠ° ΠΈ Π²Ρ‹Ρ…ΠΎΠ΄Π° ΠΏΠΎ Ρ‚ΠΎΠΊΡƒ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ°ΡŽΡ‚ΡΡ ΠΊ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ значСниям - 3,5-4,0 А/см2 ΠΈ 60-65 % соотвСтствСнно. Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ примСсСй Π² Ρ‚ΠΈΡ‚Π°Π½ΠΎΠ²ΠΎΠΌ ΠΏΠΎΡ€ΠΎΡˆΠΊΠ΅ Π½Π΅ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π΅Ρ‚ 0,135 %, Ρ‡Ρ‚ΠΎ удовлСтворяСт трСбованиям для изготовлСния ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ ΠΈΠ· ΠΊΠΎΠΌΠΏΠ°ΠΊΡ‚Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΡ‚Π°Π½Π°.The relevance of the study is determined by the creation of a fundamentally new method for the synthesis of titanium powders of high purity from ilmenite ores of Vietnam deposits, containing a mixture of ilmenite with rutile in the heavy fraction. This is one of the priority areas for the integrated development of deposits of rare and rare earth elements in Vietnam. The main aim: selection of conditions, methods and sequence of technological operations for the beneficiation of Vietnamese ilmenite ores and their subsequent chemical processing to obtain high-purity titanium. Objects: ilmenite ore of the Ha Tinh deposit (Vietnam) with a high content of oxides of titanium, iron, zirconium and a low content of silicon, aluminum, rare earth elements, vanadium, as well as ilmenite concentrate obtained as a result of enrichment of the original ilmenite ore. Methods: in the beneficiation process - electrostatic separation, flotation, the use of collectors, activators and depressants added to flotation reagents; in the electrolytic synthesis of titanium - the use of a low-melting eutectic of fluoride salts of alkali metals with the addition of titanium tetrafluoride; selection of the conditions for starting the electrolyzer, cathode current density, current and voltage for the deposition of titanium on the cathode; investigation of the optimal conditions for the release of titanium powder at low temperatures using anhydrous hydrogen fluoride. Results. The prospects of using the methods of electrostatic separation and flotation in the dressing of Vietnamese ilmenite ores of the Ha Tinh deposit are shown. An ilmenite concentrate with a titanium dioxide content of more than 50 % was obtained. The advantages of using the method of direct fluorination of an ilmenite concentrate with gaseous fluorine are substantiated, which makes it possible to ensure both the completeness of the decomposition of the solid phase and to separate the fluorides of titanium, niobium, vanadium and silicon that pass into the gas phase from those remaining in the condensed state - fluorides of iron, zirconium, hafnium and cerium. This allows you to optimize the number of stages in the subsequent processing of titanium tetrafluoride and the synthesis of metallic titanium. In titanium electrolysis, the authors have substantiated the use of composition of the eutectic of fluoride salts of alkali metals LiF (0,465 M)-NaF (0,115 M)- KF (0,42 M), which has a minimum melting point (454 Β°C) and the range of changes in the concentration of K2TiF6 (25-30 %). In this case, the values of current density and current efficiency approach the maximum values of 3,5-4,0 A/cm2 and 60-65 %, respectively. The content of impurities in titanium powder does not exceed 0,135 %, which meets the requirements for the manufacture of products from compact titanium
    corecore