9 research outputs found
Obtaining the fine-grained silicon carbide, used in the synthesis of construction ceramics
Silicon carbide is used in the production of construction and temperature-resistant goods, capable of withstanding high mechanical and thermal loads. During recent times, silicon carbide has been frequently used in the electronics industry. Since sintered silicon carbide has increasingly been used as a replacement for metal components of various devices, the process of obtaining compact goods from silicon powder has become the defining factor in the technology used for its synthesis. The selection of conditions in which the sintering is conducted depends on granulometric structure, the form and the surface condition of the initial powder. The work consists of the synthesis of silicon carbide powder using the purified form of metallurgical silicon powder and soot. The qualities of testing samples were studied, where silicon carbide was obtained using established technology, from mechanically activated elementary, fine-grained silicon and soot, by pyrolytic synthesis. It was demonstrated that synthesis produces highly pure silicon carbide powder, (Ξ±- and Ξ²-phases) with a granulometric composition that allowed subsequent sintering to produce high quality compact goods. It was established that the content of silica in synthesized silicon carbide powder does not exceed 1-2% of the total mass
Coal layer under microwave heating: analytical study under mixed boundary conditions I and II of the genus
The relevance of the work is due to the prospect of the use of microwave radiation in the energy technologies of fuel use at the stages of preparation of solid fuels for coal-fired incineration, including drying and heat treatment. A few well-known results of laboratory experiments indicate structural effects, resulting in increased reactivity and reduction of unburnt fuel. Objective: to obtain an analytical expression for the temperature field in the coal array required for parametric analysis of technological conditions of microwave exposure. Methods: construction of analytically rigorous heat transfer problems, the solution of which is usually possible only in conditions of significant simplifications. If adopted by the constancy of the electrical and technological properties of coal physical picture of the process is determined by the incident on the coal layer of a plane electromagnetic wave that generates internal heat source of Buger law. The energy equation in the form of Fourier is solved independently of Maxwell equations. In this formulation the solution of allocated tasks is carried out by the method of integral transformation of Laplace. Results. The derived analytical solutions of temperature fields are received with mixed boundary conditions with fairly arbitrary changes in time and temperature of a surface flux density of fire on the border. For some special cases on this basis can be obtained an extensive series of simplified solutions available for parametric analysis of the rationale of optimal control parameters of the technology demanded by the engineering practice in project development and operation of microwave systems for processing of solid fuels in the energy sector
Coal layer under microwave heating: analytical study under mixed boundary conditions I and II of the genus
The relevance of the work is due to the prospect of the use of microwave radiation in the energy technologies of fuel use at the stages of preparation of solid fuels for coal-fired incineration, including drying and heat treatment. A few well-known results of laboratory experiments indicate structural effects, resulting in increased reactivity and reduction of unburnt fuel. Objective: to obtain an analytical expression for the temperature field in the coal array required for parametric analysis of technological conditions of microwave exposure. Methods: construction of analytically rigorous heat transfer problems, the solution of which is usually possible only in conditions of significant simplifications. If adopted by the constancy of the electrical and technological properties of coal physical picture of the process is determined by the incident on the coal layer of a plane electromagnetic wave that generates internal heat source of Buger law. The energy equation in the form of Fourier is solved independently of Maxwell equations. In this formulation the solution of allocated tasks is carried out by the method of integral transformation of Laplace. Results. The derived analytical solutions of temperature fields are received with mixed boundary conditions with fairly arbitrary changes in time and temperature of a surface flux density of fire on the border. For some special cases on this basis can be obtained an extensive series of simplified solutions available for parametric analysis of the rationale of optimal control parameters of the technology demanded by the engineering practice in project development and operation of microwave systems for processing of solid fuels in the energy sector
Heat treatment of the coal layer by microwave energy: an analytical study in conditions of heat removal of II and III order
Relevance of the research is related to the necessity of scientific study of microwave exposure technology parameters for coal, especially when drying, at thermal treatment, burning intensification and others. Experiments show that use of microwave radiation help reduce harmful emissions from coal burning, increase energy efficiency, reduce process time, etc. For optimal conditions of microwave treatment it is very popular to search for theoretical approaches, in particular, the engineering practice requires analytical solutions for heat treatment of coal array, which was done in the study. The aim of the research is to develop strict analytic solutions of the problems of coal layer heating by microwave radiation under the heat removal of the II and III order, which allow carrying out the parametric analysis of microwave exposure and searching for the most advantageous modes of heating coal layer. Methods. The tasks of coal bed heating by microwave radiation with boundary conditions of the II and III order were set with a number of simplifications, such as persistence of thermal and electrical properties of the material, they are isotropy, one-dimensionality. This physical process itself is plane electromagnetic wave energy absorption and formation of heat sources in coal array, modeled on the Bouguer law. The energy equation in the form of Fourier in this case is considered independently of the Maxwell equations of electrodynamics. A new dependent variable was determined. It modifies the boundary conditions into homogeneous, and simplifies the search of solutions. As a result, the basic system of equations is divided into two subsystems, and the final solution was found making a superposition of these two sub-tasks.Β Results. The authors have found analytically strong dependences of temperature distribution over the cross section and time for carbon bed heated by microwave radiation, under heat removal of II and III order of boundary surfaces. These solutions are the basis for optimum parameters of microwave heating technology, a tool to reduce the spread of temperature field on the desired temperature distribution within the layer. They help determine quickly: maximum temperature inside a coal array, coordinates of its location, thermos-destructive voltage, limits of discharged heat fluxes and other
Coal layer under microwave heating: analytical study under mixed boundary conditions I and II of the genus
ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ ΡΠ°Π±ΠΎΡΡ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π° ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ Π‘ΠΠ§-ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ Π² ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΡ
ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΠΏΠ»ΠΈΠ²ΠΎΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π½Π° ΡΡΠ°Π΄ΠΈΡΡ
ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΡΠ²Π΅ΡΠ΄ΠΎΠ³ΠΎ ΡΠΎΠΏΠ»ΠΈΠ²Π° ΠΊ ΠΏΡΠ»Π΅ΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌΡ ΡΠΆΠΈΠ³Π°Π½ΠΈΡ, Π²ΠΊΠ»ΡΡΠ°Ρ ΠΏΠΎΠ΄ΡΡΡΠΊΡ ΠΈ ΠΏΡΠ΅Π΄Π³ΠΎΡΠ΅Π»ΠΎΡΠ½ΡΡ ΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΡΡ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΡ. ΠΠ΅ΠΌΠ½ΠΎΠ³ΠΎΡΠΈΡΠ»Π΅Π½Π½ΡΠ΅ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΡΡ
ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠΎΠ² ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΡΡ ΠΎ Π½Π°Π»ΠΈΡΠΈΠΈ ΡΡΡΡΠΊΡΡΡΠ½ΡΡ
ΡΡΡΠ΅ΠΊΡΠΎΠ², ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡΠΈΡ
ΠΊ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΠΈ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΡ Π½Π΅Π΄ΠΎΠΆΠΎΠ³Π° ΡΠΎΠΏΠ»ΠΈΠ²Π°, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΊ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΡ Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΈ ΡΠΎΠΊΡΠΈΠ½ΠΎΠ². Π¦Π΅Π»Ρ ΡΠ°Π±ΠΎΡΡ. ΠΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ Π΄Π»Ρ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ Π² ΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΠΌΠ°ΡΡΠΈΠ²Π΅, Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΠ³ΠΎ Π΄Π»Ρ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ»ΠΎΠ²ΠΈΠΉ ΠΌΠΈΠΊΡΠΎΠ²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ³ΠΎ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ. ΠΠ΅ΡΠΎΠ΄Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ. ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈ ΡΡΡΠΎΠ³ΠΈΡ
Π·Π°Π΄Π°Ρ ΡΠ΅ΠΏΠ»ΠΎΠΏΠ΅ΡΠ΅Π½ΠΎΡΠ°, ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΡΡ
, ΠΊΠ°ΠΊ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΠ»ΡΠΊΠΎ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
ΡΠΏΡΠΎΡΠ΅Π½ΠΈΠΉ. ΠΡΠΈ ΠΏΡΠΈΠ½ΡΡΠΎΠΌ ΠΏΠΎΡΡΠΎΡΠ½ΡΡΠ²Π΅ ΡΠ»Π΅ΠΊΡΡΠΎΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ²ΠΎΠΉΡΡΠ² ΡΠ³Π»Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΊΠ°ΡΡΠΈΠ½Π° ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΏΠ°Π΄Π°ΡΡΠ΅ΠΉ Π½Π° ΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ ΡΠ»ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠΉ Π²ΠΎΠ»Π½ΠΎΠΉ, ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠΎΡΠΌΠΈΡΡΠ΅Ρ Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΠΉ ΠΈΡΡΠΎΡΠ½ΠΈΠΊ ΡΠ΅ΠΏΠ»Π° ΠΏΠΎ Π·Π°ΠΊΠΎΠ½Ρ ΠΡΠ³Π΅ΡΠ°. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠ½Π΅ΡΠ³ΠΈΠΈ Π² ΡΠΎΡΠΌΠ΅ Π€ΡΡΡΠ΅ Π² ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎ ΠΎΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΠ°ΠΊΡΠ²Π΅Π»Π»Π°. Π Π΄Π°Π½Π½ΠΎΠΉ ΠΏΠΎΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π²ΡΠ΄Π΅Π»Π΅Π½Π½ΡΡ
Π·Π°Π΄Π°Ρ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΠ°ΠΏΠ»Π°ΡΠ°. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΡΠ²Π΅Π΄Π΅Π½Π½ΡΠ΅ Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠΎ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΡΠΌ ΠΏΠΎΠ»ΡΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ ΠΏΡΠΈ ΡΠΌΠ΅ΡΠ°Π½Π½ΡΡ
Π³ΡΠ°Π½ΠΈΡΠ½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
Ρ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΡΠΌΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡΠΌΠΈ Π²ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΠΈ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ ΠΏΠΎΡΠΎΠΊΠ° Π½Π° ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠΉ Π³ΡΠ°Π½ΠΈΡΠ΅. ΠΠ»Ρ ΡΡΠ΄Π° ΡΠ°ΡΡΠ½ΡΡ
ΡΠ»ΡΡΠ°Π΅Π² Π½Π° ΡΡΠΎΠΉ ΠΎΡΠ½ΠΎΠ²Π΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½ ΠΎΠ±ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ΄ ΡΠΏΡΠΎΡΠ΅Π½Π½ΡΡ
ΡΠ΅ΡΠ΅Π½ΠΈΠΉ, Π΄ΠΎΡΡΡΠΏΠ½ΡΡ
Π΄Π»Ρ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°, Ρ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ
ΡΠΏΡΠ°Π²Π»ΡΡΡΠΈΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ, Π²ΠΎΡΡΡΠ΅Π±ΠΎΠ²Π°Π½Π½ΡΡ
ΠΈΠ½ΠΆΠ΅Π½Π΅ΡΠ½ΠΎΠΉ ΠΏΡΠ°ΠΊΡΠΈΠΊΠΎΠΉ ΠΏΡΠΈ ΠΏΡΠΎΠ΅ΠΊΡΠ½ΠΎΠΉ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ΅ ΠΈ ΡΠΊΡΠΏΠ»ΡΠ°ΡΠ°ΡΠΈΠΈ Π‘ΠΠ§-ΡΠΈΡΡΠ΅ΠΌ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΡΠ²Π΅ΡΠ΄ΠΎΠ³ΠΎ ΡΠΎΠΏΠ»ΠΈΠ²Π° Π² ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΠΊΠ΅, Π° ΡΠ°ΠΊΠΆΠ΅ Π² ΡΠ³Π»Π΅Ρ
ΠΈΠΌΠΈΠΈ.The relevance of the work is due to the prospect of the use of microwave radiation in the energy technologies of fuel use at the stages of preparation of solid fuels for coal-fired incineration, including drying and heat treatment. A few well-known results of laboratory experiments indicate structural effects, resulting in increased reactivity and reduction of unburnt fuel. Objective: to obtain an analytical expression for the temperature field in the coal array required for parametric analysis of technological conditions of microwave exposure. Methods: construction of analytically rigorous heat transfer problems, the solution of which is usually possible only in conditions of significant simplifications. If adopted by the constancy of the electrical and technological properties of coal physical picture of the process is determined by the incident on the coal layer of a plane electromagnetic wave that generates internal heat source of Buger law. The energy equation in the form of Fourier is solved independently of Maxwell equations. In this formulation the solution of allocated tasks is carried out by the method of integral transformation of Laplace. Results. The derived analytical solutions of temperature fields are received with mixed boundary conditions with fairly arbitrary changes in time and temperature of a surface flux density of fire on the border. For some special cases on this basis can be obtained an extensive series of simplified solutions available for parametric analysis of the rationale of optimal control parameters of the technology demanded by the engineering practice in project development and operation of microwave systems for processing of solid fuels in the energy sector
Processes of electrostatic separation and flotation in the beneficiation of ilmenite ores from Vietnam and chemical processing of the obtained concentrates
ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΠΎΠ·Π΄Π°Π½ΠΈΠ΅ΠΌ ΠΏΡΠΈΠ½ΡΠΈΠΏΠΈΠ°Π»ΡΠ½ΠΎ Π½ΠΎΠ²ΠΎΠ³ΠΎ ΡΠΏΠΎΡΠΎΠ±Π° ΡΠΈΠ½ΡΠ΅Π·Π° ΡΠΈΡΠ°Π½ΠΎΠ²ΡΡ
ΠΏΠΎΡΠΎΡΠΊΠΎΠ² Π²ΡΡΠΎΠΊΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΡΠΈΡΡΠΎΡΡ ΠΈΠ· ΠΈΠ»ΡΠΌΠ΅Π½ΠΈΡΠΎΠ²ΡΡ
ΡΡΠ΄ ΠΌΠ΅ΡΡΠΎΡΠΎΠΆΠ΄Π΅Π½ΠΈΠΉ ΠΡΠ΅ΡΠ½Π°ΠΌΠ°, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
Π² ΡΡΠΆΠ΅Π»ΠΎΠΉ ΡΡΠ°ΠΊΡΠΈΠΈ ΡΠΌΠ΅ΡΡ ΠΈΠ»ΡΠΌΠ΅Π½ΠΈΡΠ° Ρ ΡΡΡΠΈΠ»ΠΎΠΌ. ΠΡΠΎ ΠΎΠ΄Π½ΠΎ ΠΈΠ· ΠΏΡΠΈΠΎΡΠΈΡΠ΅ΡΠ½ΡΡ
Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΉ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΌΠ΅ΡΡΠΎΡΠΎΠΆΠ΄Π΅Π½ΠΈΠΉ ΡΠ΅Π΄ΠΊΠΈΡ
ΠΈ ΡΠ΅Π΄ΠΊΠΎΠ·Π΅ΠΌΠ΅Π»ΡΠ½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π²ΠΎ ΠΡΠ΅ΡΠ½Π°ΠΌΠ΅. Π¦Π΅Π»Ρ: Π²ΡΠ±ΠΎΡ ΡΡΠ»ΠΎΠ²ΠΈΠΉ, ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΉ ΠΏΠΎ ΠΎΠ±ΠΎΠ³Π°ΡΠ΅Π½ΠΈΡ Π²ΡΠ΅ΡΠ½Π°ΠΌΡΠΊΠΈΡ
ΠΈΠ»ΡΠΌΠ΅Π½ΠΈΡΠΎΠ²ΡΡ
ΡΡΠ΄ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΠΈΡ
Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠ΅ΡΠ΅ΡΠ°Π±ΠΎΡΠΊΠΈ Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΡΠΎΠΊΠΎΡΠΈΡΡΠΎΠ³ΠΎ ΡΠΈΡΠ°Π½Π°. ΠΠ±ΡΠ΅ΠΊΡΡ: ΠΈΠ»ΡΠΌΠ΅Π½ΠΈΡΠΎΠ²Π°Ρ ΡΡΠ΄Π° ΠΌΠ΅ΡΡΠΎΡΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π₯Π° Π’ΠΈΠ½Ρ (ΠΡΠ΅ΡΠ½Π°ΠΌ) Ρ Π²ΡΡΠΎΠΊΠΈΠΌ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ ΠΎΠΊΡΠΈΠ΄ΠΎΠ² ΡΠΈΡΠ°Π½Π°, ΠΆΠ΅Π»Π΅Π·Π°, ΡΠΈΡΠΊΠΎΠ½ΠΈΡ ΠΈ Π½ΠΈΠ·ΠΊΠΈΠΌ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ ΠΊΡΠ΅ΠΌΠ½ΠΈΡ, Π°Π»ΡΠΌΠΈΠ½ΠΈΡ, ΡΠ΅Π΄ΠΊΠΎΠ·Π΅ΠΌΠ΅Π»ΡΠ½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ², Π²Π°Π½Π°Π΄ΠΈΡ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΈΠ»ΡΠΌΠ΅Π½ΠΈΡΠΎΠ²ΡΠΉ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°Ρ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΉ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΎΠ±ΠΎΠ³Π°ΡΠ΅Π½ΠΈΡ ΠΈΡΡ
ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ»ΡΠΌΠ΅Π½ΠΈΡΠΎΠ²ΠΎΠΉ ΡΡΠ΄Ρ. ΠΠ΅ΡΠΎΠ΄Ρ: Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΎΠ±ΠΎΠ³Π°ΡΠ΅Π½ΠΈΡ - ΡΠ»Π΅ΠΊΡΡΠΎΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ΅ΠΏΠ°ΡΠ°ΡΠΈΡ, ΡΠ»ΠΎΡΠ°ΡΠΈΡ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΎΡΠΎΠ², Π°ΠΊΡΠΈΠ²Π°ΡΠΎΡΠΎΠ² ΠΈ Π΄Π΅ΠΏΡΠ΅ΡΡΠΎΡΠΎΠ², Π΄ΠΎΠ±Π°Π²Π»ΡΠ΅ΠΌΡΡ
ΠΊ ΡΠ»ΠΎΡΠΎΡΠ΅Π°Π³Π΅Π½ΡΠ°ΠΌ; ΠΏΡΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΌ ΡΠΈΠ½ΡΠ΅Π·Π΅ ΡΠΈΡΠ°Π½Π° - ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ°ΡΠΏΠ»Π°Π²Π° Π² Π²ΠΈΠ΄Π΅ ΡΠΌΠ΅ΡΠΈ ΡΡΠΎΡΠΈΠ΄ΠΎΠ² Π»ΠΈΡΠΈΡ, Π½Π°ΡΡΠΈΡ ΠΈ ΠΊΠ°Π»ΠΈΡ, ΠΎΠ±Π»Π°Π΄Π°ΡΡΠΈΡ
ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠΎΠΉ ΠΏΠ»Π°Π²Π»Π΅Π½ΠΈΡ, Ρ Π΄ΠΎΠ±Π°Π²ΠΊΠΎΠΉ ΡΠ΅ΡΡΠ°ΡΡΠΎΡΠΈΠ΄Π° ΡΠΈΡΠ°Π½Π°; Π²ΡΠ±ΠΎΡ ΡΡΠ»ΠΎΠ²ΠΈΠΉ Π·Π°ΠΏΡΡΠΊΠ° ΡΠ»Π΅ΠΊΡΡΠΎΠ»ΠΈΠ·Π΅ΡΠ°, ΠΊΠ°ΡΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ ΡΠΎΠΊΠ°, ΡΠΈΠ»Ρ ΡΠΎΠΊΠ° ΠΈ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ Π΄Π»Ρ ΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΡ ΡΠΈΡΠ°Π½Π° Π½Π° ΠΊΠ°ΡΠΎΠ΄Π΅; ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΠΉ Π²ΡΠ΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΈΡΠ°Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡΠΎΡΠΊΠ° ΠΏΡΠΈ Π½ΠΈΠ·ΠΊΠΈΡ
ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ°Ρ
Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π±Π΅Π·Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΡΠΎΡΠΎΠ²ΠΎΠ΄ΠΎΡΠΎΠ΄Π°. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠΎΠΊΠ°Π·Π°Π½Π° ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΡΠ»Π΅ΠΊΡΡΠΎΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠ°ΡΠ°ΡΠΈΠΈ ΠΈ ΡΠ»ΠΎΡΠ°ΡΠΈΠΈ ΠΏΡΠΈ ΠΎΠ±ΠΎΠ³Π°ΡΠ΅Π½ΠΈΠΈ Π²ΡΠ΅ΡΠ½Π°ΠΌΡΠΊΠΈΡ
ΠΈΠ»ΡΠΌΠ΅Π½ΠΈΡΠΎΠ²ΡΡ
ΡΡΠ΄ ΠΌΠ΅ΡΡΠΎΡΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π₯Π° Π’ΠΈΠ½Ρ. ΠΠΎΠ»ΡΡΠ΅Π½ ΠΈΠ»ΡΠΌΠ΅Π½ΠΈΡΠΎΠ²ΡΠΉ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°Ρ Ρ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ Π΄ΠΈΠΎΠΊΡΠΈΠ΄Π° ΡΠΈΡΠ°Π½Π° Π±ΠΎΠ»Π΅Π΅ 50 %. ΠΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½Ρ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π° ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΏΡΡΠΌΠΎΠ³ΠΎ ΡΡΠΎΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈΠ»ΡΠΌΠ΅Π½ΠΈΡΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠ° ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ½ΡΠΌ ΡΡΠΎΡΠΎΠΌ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠ΅Π³ΠΎ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΡΡ ΠΏΠΎΠ»Π½ΠΎΡΡ Π΅Π³ΠΎ Π²ΡΠΊΡΡΡΠΈΡ ΠΈ ΠΎΡΠ΄Π΅Π»ΠΈΡΡ Π»Π΅ΡΡΡΠΈΠ΅ ΡΡΠΎΡΠΈΠ΄Ρ ΡΠΈΡΠ°Π½Π°, Π½ΠΈΠΎΠ±ΠΈΡ, Π²Π°Π½Π°Π΄ΠΈΡ ΠΈ ΠΊΡΠ΅ΠΌΠ½ΠΈΡ ΠΎΡ Π½Π΅Π»Π΅ΡΡΡΠΈΡ
- ΡΡΠΎΡΠΈΠ΄ΠΎΠ² ΠΆΠ΅Π»Π΅Π·Π°, ΡΠΈΡΠΊΠΎΠ½ΠΈΡ, Π³Π°ΡΠ½ΠΈΡ ΠΈ ΡΠ΅ΡΠΈΡ. ΠΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΠΏΡΠΈΠΌΠΈΠ·ΠΈΡΠΎΠ²Π°ΡΡ ΡΠΈΡΠ»ΠΎ ΡΡΠ°Π΄ΠΈΠΉ ΠΏΡΠΈ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅ΠΌ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ TiF4 Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° Π΄Π»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΡΠΈΡΠ°Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡΠΎΡΠΊΠ°. ΠΡΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΠΈ ΡΠΈΡΠ°Π½Π° ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½Π° Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ°ΡΠΏΠ»Π°Π²Π° ΡΡΠΎΡΠΈΠ΄Π½ΡΡ
ΡΠΎΠ»Π΅ΠΉ Π»ΠΈΡΠΈΡ, Π½Π°ΡΡΠΈΡ ΠΈ ΠΊΠ°Π»ΠΈΡ, ΠΈΠΌΠ΅ΡΡΠΈΡ
ΡΠΎΡΡΠ°Π²: LiF (0,465 Π)-NaF (0,115 Π)-KF (0,42 Π), ΠΎΠ±Π»Π°Π΄Π°ΡΡΠ΅Π³ΠΎ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠΎΠΉ ΠΏΠ»Π°Π²Π»Π΅Π½ΠΈΡ (454 Β°Π‘) ΠΈ ΠΏΡΠ΅Π΄Π΅Π»Π°ΠΌΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ K2TiF6 (25-30 %). ΠΡΠΈ ΡΡΠΎΠΌ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ ΡΠΎΠΊΠ° ΠΈ Π²ΡΡ
ΠΎΠ΄Π° ΠΏΠΎ ΡΠΎΠΊΡ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ°ΡΡΡΡ ΠΊ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌ - 3,5-4,0 Π/ΡΠΌ2 ΠΈ 60-65 % ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ. Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΠ΅ΠΉ Π² ΡΠΈΡΠ°Π½ΠΎΠ²ΠΎΠΌ ΠΏΠΎΡΠΎΡΠΊΠ΅ Π½Π΅ ΠΏΡΠ΅Π²ΡΡΠ°Π΅Ρ 0,135 %, ΡΡΠΎ ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΡΠ΅Ρ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡΠΌ Π΄Π»Ρ ΠΈΠ·Π³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΈΡ ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ ΠΈΠ· ΠΊΠΎΠΌΠΏΠ°ΠΊΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ°Π½Π°.The relevance of the study is determined by the creation of a fundamentally new method for the synthesis of titanium powders of high purity from ilmenite ores of Vietnam deposits, containing a mixture of ilmenite with rutile in the heavy fraction. This is one of the priority areas for the integrated development of deposits of rare and rare earth elements in Vietnam. The main aim: selection of conditions, methods and sequence of technological operations for the beneficiation of Vietnamese ilmenite ores and their subsequent chemical processing to obtain high-purity titanium. Objects: ilmenite ore of the Ha Tinh deposit (Vietnam) with a high content of oxides of titanium, iron, zirconium and a low content of silicon, aluminum, rare earth elements, vanadium, as well as ilmenite concentrate obtained as a result of enrichment of the original ilmenite ore. Methods: in the beneficiation process - electrostatic separation, flotation, the use of collectors, activators and depressants added to flotation reagents; in the electrolytic synthesis of titanium - the use of a low-melting eutectic of fluoride salts of alkali metals with the addition of titanium tetrafluoride; selection of the conditions for starting the electrolyzer, cathode current density, current and voltage for the deposition of titanium on the cathode; investigation of the optimal conditions for the release of titanium powder at low temperatures using anhydrous hydrogen fluoride. Results. The prospects of using the methods of electrostatic separation and flotation in the dressing of Vietnamese ilmenite ores of the Ha Tinh deposit are shown. An ilmenite concentrate with a titanium dioxide content of more than 50 % was obtained. The advantages of using the method of direct fluorination of an ilmenite concentrate with gaseous fluorine are substantiated, which makes it possible to ensure both the completeness of the decomposition of the solid phase and to separate the fluorides of titanium, niobium, vanadium and silicon that pass into the gas phase from those remaining in the condensed state - fluorides of iron, zirconium, hafnium and cerium. This allows you to optimize the number of stages in the subsequent processing of titanium tetrafluoride and the synthesis of metallic titanium. In titanium electrolysis, the authors have substantiated the use of composition of the eutectic of fluoride salts of alkali metals LiF (0,465 M)-NaF (0,115 M)- KF (0,42 M), which has a minimum melting point (454 Β°C) and the range of changes in the concentration of K2TiF6 (25-30 %). In this case, the values of current density and current efficiency approach the maximum values of 3,5-4,0 A/cm2 and 60-65 %, respectively. The content of impurities in titanium powder does not exceed 0,135 %, which meets the requirements for the manufacture of products from compact titanium