11 research outputs found

    Human Galectins Induce Conversion of Dermal Fibroblasts into Myofibroblasts and Production of Extracellular Matrix: Potential Application in Tissue Engineering and Wound Repair

    Get PDF
    Members of the galectin family of endogenous lectins are potent adhesion/growth-regulatory effectors. Their multi-functionality opens possibilities for their use in bioapplications. We studied whether human galectins induce the conversion of human dermal fibroblasts into myofibroblasts (MFBs) and the production of a bioactive extracellular matrix scaffold is suitable for cell culture. Testing a panel of galectins of all three subgroups, including natural and engineered variants, we detected activity for the proto-type galectin-1 and galectin-7, the chimera-type galectin-3 and the tandem-repeat-type galectin-4. The activity of galectin-1 required the integrity of the carbohydrate recognition domain. It was independent of the presence of TGF-beta 1, but it yielded an additive effect. The resulting MFBs, relevant, for example, for tumor progression, generated a matrix scaffold rich in fibronectin and galectin-1 that supported keratinocyte culture without feeder cells. Of note, keratinocytes cultured on this substratum presented a stem-like cell phenotype with small size and keratin-19 expression. In vivo in rats, galectin-1 had a positive effect on skin wound closure 21 days after surgery. In conclusion, we describe the differential potential of certain human galectins to induce the conversion of dermal fibroblasts into MFBs and the generation of a bioactive cell culture substratum. Copyright (C) 2011 S. Karger AG, Base

    Interleukin-6: a molecule with complex biological impact in cancer

    No full text
    Interleukin-6 is a multifaceted cytokine, usually reported as a pro-inflammatory molecule. However, certain anti-inflammatory activities were also attributed to IL-6. The levels of IL-6 in serum as well as in other biological fluids are elevated in an agedependent manner. Notably, it is consistently reported also as a key feature of the senescence-associated secretory phenotype. In the elderly, this cytokine participates in the initiation of catabolism resulting in, e.g. sarcopenia. It can cross the blood-brain barrier, and so it is in causal association with, e.g. depression, bipolar disorder, schizophrenia, and anorexia. In the cancer patient, IL-6 is produced by cancer and stromal cells and actively participates in their crosstalk. IL-6 supports tumour growth and metastasising in terminal patients, and it significantly engages in cancer cachexia (including anorexia) and depression associated with malignancy. The pharmacological treatment impairing IL-6 signalling represents a potential mechanism of antitumour therapy targeting cancer growth, metastatic spread, metabolic deterioration and terminal cachexia in patients

    Ecology of melanoma cell

    No full text
    Melanoma represents a cancer with increasing incidence worldwide and limited curability of advanced stages of the disease. Similarly to other types of tumors, the microenvironment is an important factor that participates in the control of melanoma biological properties. This review summarizes data regarding the role of the microenvironment, namely fibroblasts, keratinocytes and infiltrating immune cells, on melanoma growth and spreading. The role of embryonic microenvironment on melanoma cell biological properties is also discussed. The potential of therapeutic targeting of the melanoma microenvironment is demonstrated

    Cancer Microenvironment: What Can We Learn from the Stem Cell Niche

    No full text
    Epidermal stem cells (ESCs) are crucial for maintenance and self- renewal of skin epithelium and also for regular hair cycling. Their role in wound healing is also indispensable. ESCs reside in a defined outer root sheath portion of hair follicle—also known as the bulge region. ECS are also found between basal cells of the interfollicular epidermis or mucous membranes. The non-epithelial elements such as mesenchymal stem cell-like elements of dermis or surrounding adipose tissue can also contribute to this niche formation. Cancer stem cells (CSCs) participate in formation of common epithelial malignant diseases such as basal cell or squamous cell carcinoma. In this review article, we focus on the role of cancer microenvironment with emphasis on the effect of cancer-associated fibroblasts (CAFs). This model reflects various biological aspects of interaction between cancer cell and CAFs with multiple parallels to interaction of normal epidermal stem cells and their niche. The complexity of intercellular interactions within tumor stroma is depicted on example of malignant melanoma, where keratinocytes also contribute the microenvironmental landscape during early phase of tumor progression. Interactions seen in normal bulge region can therefore be an important source of information for proper understanding to melanoma. The therapeutic consequences of targeting of microenvironment in anticancer therapy and for improved wound healing are included to article

    Emerging role of tissue lectins as microenvironmental effectors in tumors and wounds

    No full text
    Detailed comparative analysis of at first sight not related process cascades is a means toward this aim: to trace common effector mechanisms and hereby eventually inspire innovative routes for therapeutic management. Following this concept, promotion of tumor progression by stroma, especially cancerassociated fibroblasts and smooth muscle actin-positive myofibroblasts, and beneficial activity of respective cells in wound healing have helped to delineate the involvement of endogenous lectins of the family of galectins. In addition to initiating conversion of fibroblasts to myofibroblasts, galectin-1 instructs the cells to produce a structurally complex extracellular matrix. This bioscaffold is useful for keratinocyte culture, also apparently operative in ameliorating wound healing. These functional aspects encourage to study in detail how lectin-(glycan) counterreceptor display is orchestrated. Such insights are assumed to have potential to contribute to rationally manipulate stem/precursor cells as resource in regenerative medicine
    corecore