17 research outputs found

    An avalanche-photodiode-based photon-number-resolving detector

    Full text link
    Avalanche photodiodes are widely used as practical detectors of single photons.1 Although conventional devices respond to one or more photons, they cannot resolve the number in the incident pulse or short time interval. However, such photon number resolving detectors are urgently needed for applications in quantum computing,2-4 communications5 and interferometry,6 as well as for extending the applicability of quantum detection generally. Here we show that, contrary to current belief,3,4 avalanche photodiodes are capable of detecting photon number, using a technique to measure very weak avalanches at the early stage of their development. Under such conditions the output signal from the avalanche photodiode is proportional to the number of photons in the incident pulse. As a compact, mass-manufactured device, operating without cryogens and at telecom wavelengths, it offers a practical solution for photon number detection.Comment: 12 pages, 4 figure

    Resonant Raman scattering of surface phonon polaritons mediated by excitons in WSe2_2 films

    Full text link
    Surface phonon-polaritons propagating along interfaces of polar dielectrics coexist with excitons in many van der Waals heterostructures, so understanding their mutual interactions is of great interest. Here, we investigate the type I surface phonon polariton of hBN via low-temperature resonant-Raman spectroscopy in hBN/WSe2 heterostructures. The resonantly enhanced hBN surface phonon polariton (SPhP) Raman signal, when laser energy is such that the scattered photons have energy close to that of the WSe2 excitons, enables detailed characterization of type I SPhP in hBN even when hBN is one monolayer thick. We find that the measured bandwidth of the SPhP Raman signal depends on the thicknesses of the hBN layer. We are able explain the experimental data using transfer matrix method simulations of SPhP dispersions providing that we assume the Raman scattering to be momentum non-conserving, as could be the case if localized WSe2 exciton states participated in the process. We further show that resonant Raman scattering from SiO2 SPhP can also be mediated by WSe2_2.Comment: 23 pages, 11 figure

    Mesoscopic effects in tunneling between parallel quantum wires

    Full text link
    We consider a phase-coherent system of two parallel quantum wires that are coupled via a tunneling barrier of finite length. The usual perturbative treatment of tunneling fails in this case, even in the diffusive limit, once the length L of the coupling region exceeds a characteristic length scale L_t set by tunneling. Exact solution of the scattering problem posed by the extended tunneling barrier allows us to compute tunneling conductances as a function of applied voltage and magnetic field. We take into account charging effects in the quantum wires due to applied voltages and find that these are important for 1D-to-1D tunneling transport.Comment: 8 pages, 7 figures, improved Figs., added Refs. and appendix, to appear in Phys. Rev.

    Probing Spin-Charge Separation in Tunnel-Coupled Parallel Quantum Wires

    Full text link
    Interactions in one-dimensional (1D) electron systems are expected to cause a dynamical separation of electronic spin and charge degrees of freedom. A promising system for experimental observation of this non-Fermi-liquid effect consists of two quantum wires coupled via tunneling through an extended uniform barrier. Here we consider the minimal model of an interacting 1D electron system exhibiting spin-charge separation and calculate the differential tunneling conductance as well as the density-density response function. Both quantities exhibit distinct strong features arising from spin-charge separation. Our analysis of these features within the minimal model neglects interactions between electrons of opposite chirality and applies therefore directly to chiral 1D electron systems realized, e.g., at the edge of integer quantum-Hall systems. Physical insight gained from our results is useful for interpreting current experiment in quantum wires as our main conclusions still apply with nonchiral interactions present. In particular, we discuss the effect of charging due to applied voltages, and the possibility to observe spin-charge separation in a time-resolved experiment.Comment: 9 pages, 3 figures, expanded version with many detail

    The spin-orbit interaction as a source of new spectral and transport properties in quasi-one-dimensional systems

    Full text link
    We present an exact theoretical study of the effect of the spin-orbit (SO) interaction on the band structure and low temperature transport in long quasi-one-dimensional electron systems patterned in two-dimensional electron gases in zero and weak magnetic fields. We reveal the manifestations of the SO interaction which cannot in principle be observed in higher dimensional systems.Comment: 5 pages including 5 figures; RevTeX; to appear in Phys.Rev.B (Rapid Communications

    Magnetotunneling as a Probe of Luttinger-Liquid Behavior

    Full text link
    A novel method for detecting Luttinger-liquid behavior is proposed. The idea is to measure the tunneling conductance between a quantum wire and a parallel two-dimensional electron system as a function of both the potential difference between them, VV, and an in-plane magnetic field, BB. We show that the two-parameter dependence on BB and VV allows for a determination of the characteristic dependence on wave vector qq and frequency ω\omega of the {\it spectral function}, ALL(q,ω)A_{\rm LL}(q,\omega), of the quantum wire. In particular, the separation of spin and charge in the Luttinger liquid should manifest itself as singularities in the II-VV-characteristic. The experimental feasibility of the proposal is discussed.Comment: Accepted for publication in Phys. Rev. Let

    Momentum-Resolved Tunneling into Fractional Quantum Hall Edges

    Full text link
    Tunneling from a two-dimensional contact into quantum-Hall edges is considered theoretically for a case where the barrier is extended, uniform, and parallel to the edge. In contrast to previously realized tunneling geometries, details of the microscopic edge structure are exhibited directly in the voltage and magnetic-field dependence of the differential tunneling conductance. In particular, it is possible to measure the dispersion of the edge-magnetoplasmon mode, and the existence of additional, sometimes counterpropagating, edge-excitation branches could be detected.Comment: 4 pages, 3 figures, RevTex

    Effect of the spin-orbit interaction on the band structure and conductance of quasi-one-dimensional systems

    Full text link
    We discuss the effect of the spin-orbit interaction on the band structure, wave functions and low temperature conductance of long quasi-one-dimensional electron systems patterned in two-dimensional electron gases (2DEG). Our model for these systems consists of a linear (Rashba) potential confinement in the direction perpendicular to the 2DEG and a parabolic confinement transverse to the 2DEG. We find that these two terms can significantly affect the band structure introducing a wave vector dependence to subband energies, producing additional subband minima and inducing anticrossings between subbands. We discuss the origin of these effects in the symmetries of the subband wave functions.Comment: 15 pages including 14 figures; RevTeX; to appear in Phys.Rev.B (15 Nov 1999

    Extreme sensitivity of the spin-splitting and 0.7 anomaly to confining potential in one-dimensional nanoelectronic devices

    Full text link
    Quantum point contacts (QPCs) have shown promise as nanoscale spin-selective components for spintronic applications and are of fundamental interest in the study of electron many-body effects such as the 0.7 x 2e^2/h anomaly. We report on the dependence of the 1D Lande g-factor g* and 0.7 anomaly on electron density and confinement in QPCs with two different top-gate architectures. We obtain g* values up to 2.8 for the lowest 1D subband, significantly exceeding previous in-plane g-factor values in AlGaAs/GaAs QPCs, and approaching that in InGaAs/InP QPCs. We show that g* is highly sensitive to confinement potential, particularly for the lowest 1D subband. This suggests careful management of the QPC's confinement potential may enable the high g* desirable for spintronic applications without resorting to narrow-gap materials such as InAs or InSb. The 0.7 anomaly and zero-bias peak are also highly sensitive to confining potential, explaining the conflicting density dependencies of the 0.7 anomaly in the literature.Comment: 23 pages, 7 figure
    corecore