8 research outputs found

    Forty-Eight-Hour Diagnosis of Onychomycosis with Subtyping of Trichophyton rubrum Strains

    No full text
    A novel strategy for the molecular identification of fungal agents of onychomycosis (including Trichophyton rubrum) has been designed based on the use of species-specific and universal primers in conjunction with a commercial kit that allows the extraction of DNA directly from the nail specimens. The microsatellite marker T1, which is based on a (GT)n repeat, was applied for the species-specific identification of Trichophyton rubrum. To evaluate how often Scopulariopsis spp. are detected in nail specimens, a second primer pair was designed to amplify specifically a 336-bp DNA fragment of the 28S region of the nuclear rRNA gene of S. brevicaulis and closely related species. Other fungal species were identified using amplification of the internal transcribed spacer (ITS) region of the rRNA gene, followed by restriction fragment length polymorphism analysis or sequencing. In addition, polyacrylamide gel separation of the T1-PCR product allowed subtyping of T. rubrum strains. We studied 195 nail specimens (the “nail sample”) and 66 previously collected etiologic strains (the “strain sample”) from 261 onychomycosis patients from Bulgaria and Greece. Of the etiologic agents obtained from both samples, T. rubrum was the most common organism, confirmed to be present in 76% of all cases and serving as the sole or (rarely) mixed etiologic agent in 199 of 218 cases (91%) where the identity of the causal organism(s) was confirmed. Other agents seen included molds (6% of cases with identified etiologic agents; mainly S. brevicaulis) and other dermatophyte species (4%; most frequently Trichophyton interdigitale). Simultaneous infections with two fungal species were confirmed in a small percentage of cases (below 1%). The proportion of morphologically identified cultures revealed by molecular study to have been misidentified was 6%. Subtyping revealed that all but five T. rubrum isolates were of the common type B that is prevalent in Europe. In comparison to microscopy and culture, the molecular approach was superior. The PCR was more sensitive (84%) than culture (22%) in the nail sample and was more frequently correct in specifically identifying etiologic agents (100%) than microscopy plus routine culture in either the nail or the strain samples (correct culture identifications in 96% and 94% of cases, respectively). Using the molecular approach, the time for diagnosing the identity of fungi causing onychomycosis could be reduced to 48 h, whereas culture techniques generally require 2 to 4 weeks. The early detection and identification of the infecting species in nails will facilitate prompt and appropriate treatment and may be an aid for the development of new antifungal agents

    Carbapenemase Production of Clinical Isolates Acinetobacter baumannii and Pseudomonas aeruginosa from a Bulgarian University Hospital

    No full text
    Background: Production of Bla OXA-23, OXA-24, OXA-58 and hyperexpression of OXA-51 due to ISAba1 insertion sequence are the leading causes of carbapenem resistance in Acinetobacter baumannii. The loss of OprD transmembrane protein and the overexpression of some effl ux pumps are considered to be the main factors for carbapenem resistance in Pseudomonas aeruginosa whereas metallo-enzymes’ production has a secondary role. Aim: бo examine the carbapenem resistance due to carbapenemase production among clinically signifi cant Gram-negative non-fermenters from St George University hospital, Plovdiv: A. baumannii and P. aeruginosa. Materials and methods: Forty three A. baumannii and 43 P. aeruginosa isolates, resistant or with intermediate resistance to imipenem and/or meropenem were included in the study. They were collected from patients admitted in 14 various hospital wards between 2010 and 2014. Both phenotypic and genetic methods were used for identifi cation and antimicrobial susceptibility testing. Results: All A. baumannii demonstrated carbapenemase production determined by a modifi ed Hodge test whereas P. aeruginosa isolates did not show this phenomenon. OXA-23 genes were determined in 97.7% (42 out of 43) of A. baumannii isolates indistinguishable from the sequence of the classical ARI-1 gene. OXA-24, OXA-58 and overexpression of OXA-51 were not registered in any of the isolates. All P. aeruginosa were negative for blaVIM and blaIMP genes. Conclusion: The leading cause of carbapenem resistance in A. baumannii isolates from our hospital is the carbapenemase production due to the expression of OXA- 23 gene, whereas in P. aeruginosa - the loss of transmembrane OprD protein and the effl ux pumps’ hyperexpression are suspected to be the main mechanisms
    corecore