70 research outputs found

    Reasons for accepting or declining to participate in randomized clinical trials for cancer therapy

    Get PDF
    This paper reports on the reasons why patients agreed to or declined entry into randomized trials of cancer following discussions conducted by clinicians in both District General and University Hospitals. Two hundred and four patients completed a 16-item questionnaire following the consultation, of these 112 (55%) were women with breast cancer. Overall results showed that 147 (72.1%) patients accepted entry to a randomized clinical trial (RCT). The main reasons nominated for participating in a trial were that ‘others will benefit’ (23.1%) and ‘trust in the doctor’ (21.1%). One of the main reasons for declining trial entry was that patients were ‘worried about randomization’ (19.6%). There was a significantly higher acceptance rate for trials providing active treatment in every arm 98 (80.6%) compared with those trials with a no treatment arm 46 (60.5%), χ2test P = 0.003. The study outlines a number of factors that appear to influence a patient’s decision to accept or decline entry into an RCT of cancer therapy. An important factor is whether or not the trial offers active treatment in all arms of the study. Communication that promotes trust and confidence in the doctor is also a powerful motivating influence. © 2000 Cancer Research Campaig

    A BCR-ABL Mutant Lacking Direct Binding Sites for the GRB2, CBL and CRKL Adapter Proteins Fails to Induce Leukemia in Mice

    Get PDF
    The BCR-ABL tyrosine kinase is the defining feature of chronic myeloid leukemia (CML) and its kinase activity is required for induction of this disease. Current thinking holds that BCR-ABL forms a multi-protein complex that incorporates several substrates and adaptor proteins and is stabilized by multiple direct and indirect interactions. Signaling output from this highly redundant network leads to cellular transformation. Proteins known to be associated with BCR-ABL in this complex include: GRB2, c-CBL, p62DOK, and CRKL. These proteins in turn, link BCR-ABL to various signaling pathways indicated in cellular transformation. In this study we show that a triple mutant of BCR-ABL with mutations of the direct binding sites for GRB2, CBL, p62DOK and CRKL, is defective for transformation of primary hematopoietic cells in vitro and in a murine CML model, while it retains the capacity to induce IL-3 independence in 32D cells. Compared to BCR-ABL, the triple mutant's ability to activate the MAP kinase and PI3-kinase pathways is severely compromised, while STAT5 phosphorylation is maintained, suggesting that the former are crucial for the transformation of primary cells, but dispensable for transformation of factor dependent cell lines. Our data suggest that inhibition of BCR-ABL-induced leukemia by disrupting protein interactions could be possible, but would require blocking of multiple sites

    Untersuchungen zur Herstellung chimärisierter Antikörper.

    No full text

    Altruism: A form of hope for patients with advanced cancer.

    No full text

    Unaltered immunoglobulin expression in hybridoma cells modified by targeting of the heavy chain locus with an integration vector.

    No full text
    Chimeric antibodies against the murine T-cell antigen Thy-1.2 were generated in amounts sufficient for in vivo studies by substituting the constant gene segments via homologous recombination in the hybridoma cell. We show that an integration vector targets the heavy chain locus at high frequency even in a non-isogenic situation. Using this vector type, for the first time expression rates were obtained that were identical to the parental hybridoma. The use of the gpt selection marker seems to be crucial for efficient expression, and may overcome a recently claimed drawback of vector integration. A chimeric antibody produced by gene targeting was characterized in vitro and in vivo

    Integration vectors for antibody chimerization by homologous recombination in hybridoma cells.

    No full text
    Gene targeting in hybridoma cells provides a tool for generating chimeric antibodies with great ease and at high yield. We present an evaluation of integration vectors for the chimerization of the immunoglobulin heavy chain locus which are universally applicable to hybridomas of different isotypes and mouse strains. There are three problems arising with vector integration: (i) the frequent persistence of the parental isotype; (ii) an isotype-dependent aberrant replacement-like recombination giving rise to antibodies devoid of the CH1 domain; and (iii) secondary recombinations leading to excision of the integrated sequence. To overcome these problems, we have systematically evaluated the consequences of extending the vector flank. Although the homology length clearly determines the recombination frequency, this effect is counteracted by the secondary recombination, which also correlates to the homology length. In contrast, the truncating recombination events are not dependent on the homology length and never lead to re-excision of the construct. To take advantage of the increased genetic stability obtained with short flanks, we constructed an enrichment vector which yields high recombination efficiencies despite using a short flanking sequence. In addition, irradiation of the cells enhanced homologous recombination. The problem of the co-production of two isotypes was overcome by a two-step targeting reaction
    • …
    corecore