2,647 research outputs found

    Relaxing to Three Dimensions

    Full text link
    We propose a new selection principle for distinguishing among possible vacua that we call the "relaxation principle". The idea is that the universe will naturally select among possible vacua through its cosmological evolution, and the configuration with the biggest filling fraction is the likeliest. We apply this idea to the question of the number of dimensions of space. We show that under conventional (but higher-dimensional) FRW evolution, a universe filled with equal numbers of branes and antibranes will naturally come to be dominated by 3-branes and 7-branes. We show why this might help explain the number of dimensions that are experienced in our visible universe.Comment: 4 pages; minor improvements, references adde

    Notes on Properties of Holographic Matter

    Full text link
    Probe branes with finite worldvolume electric flux in the background created by a stack of Dp branes describe holographically strongly interacting fundamental matter at finite density. We identify two quantities whose leading low temperature behavior is independent of the dimensionality of the probe branes: specific heat and DC conductivity. This behavior can be inferred from the dynamics of the fundamental strings which provide a good description of the probe branes in the regime of low temperatures and finite densities. We also comment on the speed of sound on the branes and the temperature dependence of DC conductivity at vanishing charge density.Comment: 18 pages, 2 figures; v2: corrected error in Section 6, conclusions unchanged; v3: improved figures and added clarifying comment

    The Stress-Energy Tensor of Flavor Fields from AdS/CFT

    Full text link
    We use the AdS/CFT correspondence to study the transport properties of massive N=2 hypermultiplet fields in an N=4 SU(Nc) super-Yang-Mills theory plasma in the large Nc, large 't Hooft coupling limit, and in the presence of a baryon number chemical potential and external electric and magnetic fields. In particular, we compute the flavor fields' contribution to the stress-energy tensor. We find infrared divergences in the stress-energy tensor, arising from the flavor fields' constant rate of energy and momentum loss. We regulate these divergences and extract the energy and momentum loss rates from the divergent terms. We also check our result in various limits in which the divergences are absent. The supergravity dual is a system of D7-branes, with a particular configuration of worldvolume fields, probing an AdS-Schwarzschild background. The supergravity calculation amounts to computing the stress-energy tensor of the D7-branes.Comment: 32 pages; v2, added one footnote in section 2.2, added one reference, version published in JHE

    Perioperative and anesthetic deaths: toxicological and medico legal aspects

    Get PDF
    Background: Anesthesia has become safer during decades, though there is still a preventable mortality; the complexity of medical and surgical interventions, increasingly older and sicker patients, has created a host of new hazards in anesthesiology. In this paper, some of these perioperative (PO) fatal adverse events are investigated in terms of health responsibility. Selective literature research in several data bases, concerning perioperative and anesthetic deaths and medical responsibility, was performed. Main text: A generally accepted definition of the anesthesia and perioperatory-related death still remains one of the major concerns in forensic pathology, and the terms “operative deaths” and “anesthetic deaths” are usually applied inaccurately within the medico-legal literature. Such events involve comprehensively PO fatalities and allow for subtle separation of natural and unnatural death, at least from the prospective of forensic pathology. Iatrogenic deaths in this field can be separated into some major categories, as attributable to previous patient’s unfavorable conditions or depending from surgical procedure per se (such as PO cardiac and cerebrovascular events). In this review, the authors carried out syntheses of specific research areas regarding epidemiology, complications of general and spinal anesthetic, failure in airway management and patient’s circulatory homeostasis, and adverse drugs reactions; analysis considering the challenge of anesthetic-related mortality, epidemiology and classifications, by indicating causal chain of death, in respect of both contributing and associated anesthetic and surgery facts. Conclusions: Perioperative quality control programs and its relevance for medico-legal evaluation are emphasized as, although mortality rates have decreased worldwide over the last decades, however, preventable drug-related deaths still happen. Such fatal events have to be considered within the field of forensic pathology experts, with regard of malpractice claims, to implement a strategy for preventing potentially fatal complications

    Critical Exponents from AdS/CFT with Flavor

    Full text link
    We use the AdS/CFT correspondence to study the thermodynamics of massive N=2 supersymmetric hypermultiplet flavor fields coupled to N=4 supersymmetric SU(Nc) Yang-Mills theory, formulated on curved four-manifolds, in the limits of large Nc and large 't Hooft coupling. The gravitational duals are probe D-branes in global thermal AdS. These D-branes may undergo a topology-changing transition in the bulk. The D-brane embeddings near the point of the topology change exhibit a scaling symmetry. The associated scaling exponents can be either real- or complex-valued. Which regime applies depends on the dimensionality of a collapsing submanifold in the critical embedding. When the scaling exponents are complex-valued, a first-order transition associated with the flavor fields appears in the dual field theory. Real scaling exponents are expected to be associated with a continuous transition in the dual field theory. For one example with real exponents, the D7-brane, we study the transition in detail. We find two field theory observables that diverge at the critical point, and we compute the associated critical exponents. We also present analytic and numerical evidence that the transition expresses itself in the meson spectrum as a non-analyticity at the critical point. We argue that the transition we study is a true phase transition only when the 't Hooft coupling is strictly infinite.Comment: 31 pages, 21 eps files in 12 figures; v2 added one reference and one footnote, version published in JHE

    Higher order corrections to the Newtonian potential in the Randall-Sundrum model

    Full text link
    The general formalism for calculating the Newtonian potential in fine-tuned or critical Randall-Sundrum braneworlds is outlined. It is based on using the full tensor structure of the graviton propagator. This approach avoids the brane-bending effect arising from calculating the potential for a point source. For a single brane, this gives a clear understanding of the disputed overall factor 4/3 entering the correction. The result can be written on a compact form which is evaluated to high accuracy for both short and large distances.Comment: 12 pages, LaTeX2e with RevTeX4, 3 postscript figures; Minor corrections, references update

    Model building in AdS/CMT: DC conductivity and Hall angle

    Full text link
    Using the bottom-up approach in a holographic setting, we attempt to study both the transport and thermodynamic properties of a generic system in 3+1 dimensional bulk spacetime. We show the exact 1/T and T2T^2 dependence of the longitudinal conductivity and Hall angle, as seen experimentally in most copper-oxide systems, which are believed to be close to quantum critical point. This particular temperature dependence to conductivities are possible in two different cases: (1) Background solutions with scale invariant and broken rotational symmetry, (2) solutions with pseudo-scaling and unbroken rotational symmetry but only at low density limit. Generically, the study of the transport properties in a scale invariant background solution, using the probe brane approach, at high density and at low temperature limit suggests us to consider only metrics with two exponents. More precisely, the spatial part of the metric components should not be same i.e., gxx≠gyyg_{xx}\neq g_{yy}. In doing so, we have generated the above mentioned behavior to conductivity with a very special behavior to specific heat which at low temperature goes as: CV∌T3C_V\sim T^3. However, if we break the scaling symmetry of the background solution by including a nontrivial dilaton, axion or both and keep the rotational symmetry then also we can generate such a behavior to conductivity but only in the low density regime. As far as we are aware, this particular temperature dependence to both the conductivity and Hall angle is being shown for the first time using holography.Comment: 1+40 pages; v2: Analysis of pseudo-scaling and rotational invariant solutions are added; v3: Improved presentation; v4: Typos fixed and closer to journal versio
    • 

    corecore