788 research outputs found
Confinement of Light in Disordered Photonic Lattices: A New Platform for Waveguidance
A right amount of disorder in the form of refractive index variation has been
introduced to achieve transverse localization of light 1D semi-infinite
photonic lattices. Presence of longitudinally-invariant transverse disorder
opens-up a new waveguiding mechanism.Comment: 3 page
Robust Localization from Incomplete Local Information
We consider the problem of localizing wireless devices in an ad-hoc network
embedded in a d-dimensional Euclidean space. Obtaining a good estimation of
where wireless devices are located is crucial in wireless network applications
including environment monitoring, geographic routing and topology control. When
the positions of the devices are unknown and only local distance information is
given, we need to infer the positions from these local distance measurements.
This problem is particularly challenging when we only have access to
measurements that have limited accuracy and are incomplete. We consider the
extreme case of this limitation on the available information, namely only the
connectivity information is available, i.e., we only know whether a pair of
nodes is within a fixed detection range of each other or not, and no
information is known about how far apart they are. Further, to account for
detection failures, we assume that even if a pair of devices is within the
detection range, it fails to detect the presence of one another with some
probability and this probability of failure depends on how far apart those
devices are. Given this limited information, we investigate the performance of
a centralized positioning algorithm MDS-MAP introduced by Shang et al., and a
distributed positioning algorithm, introduced by Savarese et al., called
HOP-TERRAIN. In particular, for a network consisting of n devices positioned
randomly, we provide a bound on the resulting error for both algorithms. We
show that the error is bounded, decreasing at a rate that is proportional to
R/Rc, where Rc is the critical detection range when the resulting random
network starts to be connected, and R is the detection range of each device.Comment: 40 pages, 13 figure
- …