59 research outputs found

    Impact of high-k gate dielectric with different angles of coverage on the electrical characteristics of gate-all-around field effect transistor: a simulation study

    Get PDF
    In this paper, we consider the electrical performance of a circular cross section gate all around-field effect transistor (GAA-FET) in which gate dielectric coverage with high-k dielectric (HfO2) over the channel region has been varied. Our simulations show the fact that as high-k dielectric coverage over the channel increases, ION/IOFF ratio and transconductance over drain current (gm/ID) will be enhanced. Moreover, we investigate the impact of channel length scaling on these devices. The obtained results show that subthreshold slope (SS), drain induced barrier lowering (DIBL) and threshold voltage (VTH) roll-off will be reduced as a result of scaling. In this work TCAD simulator was concisely calibrated against experimental data of a GAA-FET from IBM. The Schrödinger equation is solved in the transverse direction and quantum mechanical confinement effects are taken into account

    Improvement of a nano-scale silicon on insulator field effect transistor performance using electrode, doping and buried oxide engineering

    Get PDF
    In this work, a novel Silicon on Insulator (SOI) MOSFET is proposed and investigated. The drain and source electrode structures are optimized to enhance ON-current while global device temperature and hot carrier injection are decreased. In addition, to create an effective heat passage from channel to outside of the device, a silicon region has embedded in the buried oxide. In order to reduce the device leakage current and controlling the threshold voltage, a p-type retrograde doping is introduced into channel region. Since the air has the least permittivity among materials, it can be utilized to decrease the device parasitic capacitances. Based on this, an air gap is embedded in the buried oxide near the silicon to improve RF performance of the device. Because the source and drain electrodes are embedded in and over the silicon film in the source and drain regions, we called this structure EEIOS-SOI MOSFET. “EEIOS” stands for “Embedded Electrodes In and Over the Silicon film”. During this work, EEIOS-SOI MOSFET is compared with a conventional SOI MOSFET and another SOI MOSFET with just Embedded Electrodes In the Silicon Film (EEIS-SOI). EEIS-SOI presents better electrical figure of merits including lower subthreshold slope and lower leakage current in simulations. An immense investigation among these devices shows that EEIOS-SOI MOSFET has better transconductance, lower gate injection leakage current and lower temperature related to DC parameters and higher cut off frequency, gain bandwidth product and unilateral power gain related to AC figures of merits compared to its counterparts

    Improvement of a nano-scale silicon on insulator field effect transistor performance using electrode, doping and buried oxide engineering

    Get PDF
    In this work, a novel Silicon on Insulator (SOI) MOSFET is proposed and investigated. The drain and source electrode structures are optimized to enhance ON-current while global device temperature and hot carrier injection are decreased. In addition, to create an effective heat passage from channel to outside of the device, a silicon region has embedded in the buried oxide. In order to reduce the device leakage current and controlling the threshold voltage, a p-type retrograde doping is introduced into channel region. Since the air has the least permittivity among materials, it can be utilized to decrease the device parasitic capacitances. Based on this, an air gap is embedded in the buried oxide near the silicon to improve RF performance of the device. Because the source and drain electrodes are embedded in and over the silicon film in the source and drain regions, we called this structure EEIOS-SOI MOSFET. “EEIOS” stands for “Embedded Electrodes In and Over the Silicon film”. During this work, EEIOS-SOI MOSFET is compared with a conventional SOI MOSFET and another SOI MOSFET with just Embedded Electrodes In the Silicon Film (EEIS-SOI). EEIS-SOI presents better electrical figure of merits including lower subthreshold slope and lower leakage current in simulations. An immense investigation among these devices shows that EEIOS-SOI MOSFET has better transconductance, lower gate injection leakage current and lower temperature related to DC parameters and higher cut off frequency, gain bandwidth product and unilateral power gain related to AC figures of merits compared to its counterparts

    Combating Antimicrobial Resistance With New-To-Nature Lanthipeptides Created by Genetic Code Expansion

    Get PDF
    Due to the rapid emergence of multi-resistant bacterial strains in recent decades, the commercially available effective antibiotics are becoming increasingly limited. On the other hand, widespread antimicrobial peptides (AMPs) such as the lantibiotic nisin has been used worldwide for more than 40 years without the appearance of significant bacterial resistance. Lantibiotics are ribosomally synthesized antimicrobials generated by posttranslational modifications. Their biotechnological production is of particular interest to redesign natural scaffolds improving their pharmaceutical properties, which has great potential for therapeutic use in human medicine and other areas. However, conventional protein engineering methods are limited to 20 canonical amino acids prescribed by the genetic code. Therefore, the expansion of the genetic code as the most advanced approach in Synthetic Biology allows the addition of new amino acid building blocks (non-canonical amino acids, ncAAs) during protein translation. We now have solid proof-of-principle evidence that bioexpression with these novel building blocks enabled lantibiotics with chemical properties transcending those produced by natural evolution. The unique scaffolds with novel structural and functional properties are the result of this bioengineering. Here we will critically examine and evaluate the use of the expanded genetic code and its alternatives in lantibiotics research over the last 7 years. We anticipate that Synthetic Biology, using engineered lantibiotics and even more complex scaffolds will be a promising tool to address an urgent problem of antibiotic resistance, especially in a class of multi-drug resistant microbes known as superbugs.EC/H2020/764591/EU/Synthetic Circuits for Robust Orthogonal Production/SynCro

    Targeted Codelivery of Prodigiosin and Simvastatin Using Smart BioMOF: Functionalization by Recombinant Anti-VEGFR1 scFv

    Get PDF
    Biological metal-organic frameworks (BioMOFs) are hybrid compounds in which metal nodes are linked to biocompatible organic ligands and have potential for medical application. Herein, we developed a novel BioMOF modified with an anti-VEGFR1 scFv antibody (D16F7 scFv). Our BioMOF is co-loaded with a combination of an anticancer compound and a lipid-lowering drug to simultaneously suppress the proliferation, growth rate and metastases of cancer cells in cell culture model system. In particular, Prodigiosin (PG) and Simvastatin (SIM) were co-loaded into the newly synthesized Ca-Gly BioMOF nanoparticles coated with maltose and functionalized with a recombinant maltose binding protein-scFv fragment of anti-VEGFR1 (Ca-Gly-Maltose-D16F7). The nanoformulation, termed PG + SIM-NP-D16F7, has been shown to have strong active targeting behavior towards VEGFR1-overexpresing cancer cells. Moreover, the co-delivery of PG and SIM not only effectively inhibits the proliferation of cancer cells, but also prevents their invasion and metastasis. The PG + SIM-NP-D16F7 nanocarrier exhibited stronger cytotoxic and anti-metastatic effects compared to mono-treatment of free drugs and drug-loaded nanoparticles. Smart co-delivery of PG and SIM on BioMOF nanoparticles had synergistic effects on growth inhibition and prevented cancer cell metastasis. The present nanoplatform can be introduced as a promising tool for chemotherapy compared with mono-treatment and/or non-targeted formulations

    The role of nitric oxide in the protective action of remote ischemic per-conditioning against ischemia/reperfusion-induced acute renal failure in rat

    Get PDF
    Objective(s): We investigated the role of nitric oxide (NO) in the protective effects of remote ischemic per-conditioning (rIPerC) on renal ischemia/reperfusion (I/R) injury in male rats. Materials and Methods: I/R treatment consisted of 45 min bilateral renal artery ischemia and 24 hr reperfusion interval. rIPerC was performed using four cycles of 2 min occlusions of the left femoral artery and 3 min reperfusion at the beginning of renal ischemia. The animals were given normal saline (vehicle), NG-nitro-L-arginine methyl ester (L-NAME) or L-arginine. Following the reperfusion period, renal functional- and oxidative stress- parameters, as well as histopathological changes were assessed. Results: In comparison with the sham group, I/R resulted in renal dysfunction, as indicated by significantly lower creatinine clearance and higher fractional excretion of sodium. This went along with decreased glutathione peroxidase (GPX) and catalase (CAT) activity in the I/R group, increased malondialdehyde (MDA) contents and histological damages. In comparison with the I/R group, the rIPerC group displayed improved renal function, increased activity of GPX and CAT enzymes, and decreased MDA level. However, these effects were abrogated by L-NAME injection and augmented by L-arginine treatment. Conclusion: According to the results, the functional and structural consequences of rIPerC against I/R-induced kidney dysfunction, which is associated with reduction of lipid peroxidation and intensification of anti-oxidant systems, is partially dependent on NO production

    Influence of high-K insulator and source stack on the performance of a double gate tunnel FET: a simulation study

    Get PDF
    The influence of incorporating HfO2 as a dielectric at the drain side and a silicon stack at the source side on the electrical performance of a double-gate tunnel field-effect transistor (TFET) is investigated by comparing a conventional TFET structure with four other structures in which the gate dielectric material is either homogeneous or heterogeneous while the insulator on the drain side is either SiO2 or HfO2. Moreover, a structure with a silicon source stack is proposed and the figures of merit of the resulting device are compared with other counterparts. The results of the simulations reveal that the presence of an HfO2 insulator on the drain side reduces the ambipolar conduction while the heterogeneous gate dielectric enhances the drive current and transconductance. However, the use of HfO2 slightly deteriorates the source–gate and drain–gate capacitances in comparison with the conventional TFET. Furthermore, the incorporation of a silicon source stack along with a heterogeneous gate dielectric and HfO2 insulator on the drain side leads to a higher ION/IOFF ratio, lower subthreshold slope (S), and lower ambipolar conduction in the studied TFET with channel length of 50 nm

    Improvement in electrical characteristics of Silicon on Insulator (SOI) transistor using Graphene material

    Get PDF
    This paper presents the electrical characteristics of a short channel Silicon on Insulator (SOI) transistor with a graphene layer. The graphene sheet is used at the bottom of the channel close to the source side and a proportionally heavily p-type retrograde doping implanted in nearly middle of the channel. To increase the gate electrostatic control over the channel we incorporated a high-K material i.e. HfO2 as the gate oxide insulator. Due to Graphene growth and Retrograde Doping in the Channel, we called this structure “GRDC-SOI” transistor. Because graphene sheet has low band gap and high mobility, we used it to increase the on-state current. Engineered p-type retrograde doping utilized for both decreasing off-state current and increasing on-state current. These dopants cause impurity scattering in the depth of the channel and deflect electron movements and decrease off-current. On the other hand, these dopants which are located almost in the middle of the channel can play the role of base in an NPN Bipolar Junction Transistor (BJT), and turn it on and exceed the on-state current. An immense comparison among our proposed device and a device similar to GRDC-SOI but without Graphene sheet (RDC-SOI) and a conventional structure shows that our proposed device has superior electrical characteristics in terms of ION/IOFF ratio, transconductance, subthreshold slope, leakage current, breakdown voltage and short channel effects like hot carriers injection and DIBL. Our analyses demonstrate that GRDC-SOI transistor can open a window for utilizing Graphene material in digital circuits and system on chip applications

    Bioethanol production from white onion by yeast in repeated batch

    No full text
    Abstract Considered to be the cleanest liquid fuel, bioethanol can be a reliable alternative to fossil fuels. It is produced by fermentation of sugar components of plant materials. The common onions are considered to be a favorable source of fermentation products as they have high sugar contents as well as contain various nutrients. This study focused on the effective production of ethanol from an endemic Iranian white onion (Allium cepa L., Dorche cultivar) by the yeast "Saccharomyces cerevisiae" in repeated batch. The results showed that the total sugar concentration of onion juice was77.3 g/l. The maximum rate of productivity, ethanol yield and final bioethanol percentage was 8 g/l/h (g ethanol per liter of onion juice per hour), 40 g/l (g ethanol per liter of onion juice and 93 %, respectively
    • …
    corecore