1,696 research outputs found

    Lattice two-body problem with arbitrary finite range interactions

    Full text link
    We study the exact solution of the two-body problem on a tight-binding one-dimensional lattice, with pairwise interaction potentials which have an arbitrary but finite range. We show how to obtain the full spectrum, the bound and scattering states and the "low-energy" solutions by very efficient and easy-to-implement numerical means. All bound states are proven to be characterized by roots of a polynomial whose degree depends linearly on the range of the potential, and we discuss the connections between the number of bound states and the scattering lengths. "Low-energy" resonances can be located with great precission with the methods we introduce. Further generalizations to include more exotic interactions are also discussed.Comment: 6 pages, 3 figure

    Quasiparticles governing the zero-temperature dynamics of the 1D spin-1/2 Heisenberg antiferromagnet in a magnetic field

    Get PDF
    The T=0 dynamical properties of the one-dimensional (1D) s=1/2s=1/2 Heisenberg antiferromagnet in a uniform magnetic field are studied via Bethe ansatz for cyclic chains of NN sites. The ground state at magnetization 0<Mz<N/20<M_z<N/2, which can be interpreted as a state with 2Mz2M_z spinons or as a state of MzM_z magnons, is reconfigured here as the vacuum for a different species of quasiparticles, the {\em psinons} and {\em antipsinons}. We investigate three kinds of quantum fluctuations, namely the spin fluctuations parallel and perpendicular to the direction of the applied magnetic field and the dimer fluctuations. The dynamically dominant excitation spectra are found to be sets of collective excitations composed of two quasiparticles excited from the psinon vacuum in different configurations. The Bethe ansatz provides a framework for (i) the characterization of the new quasiparticles in relation to the more familiar spinons and magnons, (ii) the calculation of spectral boundaries and densities of states for each continuum, (iii) the calculation of transition rates between the ground state and the dynamically dominant collective excitations, (iv) the prediction of lineshapes for dynamic structure factors relevant for experiments performed on a variety of quasi-1D antiferromagnetic compounds, including KCuF3_3, Cu(C4_4H4_4N2)(NO3)2_2)(NO_3)_2, and CuGeO3_3.Comment: 13 pages, 12 figure

    Spectrum and transition rates of the XX chain analyzed via Bethe ansatz

    Get PDF
    As part of a study that investigates the dynamics of the s=1/2 XXZ model in the planar regime |Delta|<1, we discuss the singular nature of the Bethe ansatz equations for the case Delta=0 (XX model). We identify the general structure of the Bethe ansatz solutions for the entire XX spectrum, which include states with real and complex magnon momenta. We discuss the relation between the spinon or magnon quasiparticles (Bethe ansatz) and the lattice fermions (Jordan-Wigner representation). We present determinantal expressions for transition rates of spin fluctuation operators between Bethe wave functions and reduce them to product expressions. We apply the new formulas to two-spinon transition rates for chains with up to N=4096 sites.Comment: 11 pages, 4 figure

    Lineshape predictions via Bethe ansatz for the one-dimensional spin-1/2 Heisenberg antiferromagnet in a magnetic field

    Get PDF
    The spin fluctuations parallel to the external magnetic field in the ground state of the one-dimensional (1D) s=1/2 Heisenberg antiferromagnet are dominated by a two-parameter set of collective excitations. In a cyclic chain of N sites and magnetization 0<M_z<N/2, the ground state, which contains 2M_z spinons, is reconfigured as the physical vacuum for a different species of quasi-particles, identifiable in the framework of the coordinate Bethe ansatz by characteristic configurations of Bethe quantum numbers. The dynamically dominant excitations are found to be scattering states of two such quasi-particles. For N -> \infty, these collective excitations form a continuum in (q,\omega)-space with an incommensurate soft mode. Their matrix elements in the dynamic spin structure factor S_{zz}(q,\omega) are calculated directly from the Bethe wave functions for finite N. The resulting lineshape predictions for N -> \infty complement the exact results previously derived via algebraic analysis for the exact 2-spinon part of S_{zz}(q,\omega) in the zero-field limit. They are directly relevant for the interpretation of neutron scattering data measured in nonzero field on quasi-1D antiferromagnetic compounds.Comment: 10 page

    Toward a Science of Effective Cognitive Training

    Get PDF
    A long-standing question in the behavioral sciences is whether cognitive functions can be improved through dedicated training. It is uncontested that training programs can lead to near transfer, meaning increased performance on untrained tasks involving similar cognitive functions. However, whether training also leads to far transfer, meaning increased performance on loosely related untrained tasks or even activities of daily living, is still hotly debated. Here, we review the extant literature and, in particular, the most recent meta-analytic evidence and argue that the ongoing crisis in the field of cognitive-training research may benefit from taking a more mechanistic approach to studying the effectiveness of training. We propose that (a) adopting a more rigorous theoretical framework that builds on a process-based account of training and transfer, (b) considering the role of individual differences in the responsiveness to training, and (c) drawing on Bayesian models of development may help to solve controversial issues in the field and lead the way to designing and implementing more effective training protocols

    Quantum chaos: an introduction via chains of interacting spins-1/2

    Full text link
    We introduce aspects of quantum chaos by analyzing the eigenvalues and the eigenstates of quantum many-body systems. The properties of quantum systems whose classical counterparts are chaotic differ from those whose classical counterparts are not chaotic. The spectrum of the first exhibits repulsion of the energy levels. This is one of the main signatures of quantum chaos. We show how level repulsion develops in one-dimensional systems of interacting spins 1/2 which are devoid of random elements and involve only two-body interactions. In addition to the statistics of the eigenvalues, we analyze how the structure of the eigenstates may indicate chaos. The programs used to obtain the data are available online.Comment: 7 pages, 3 figure

    Interaction effects between impurities in low dimensional spin-1/2 antiferromagnets

    Full text link
    We are considering the interplay between several non-magnetic impurities in the spin-1/2 Heisenberg antiferromagnet in chains, ladders and planes by introducing static vacancies in numerical quantum Monte Carlo simulations. The effective potential between two and more impurities is accurately determined, which gives a direct measure of the quantum correlations in the systems. Large effective interaction potentials are an indication of strong quantum correlations in the system and reflect the detailed nature of the valence bond ground states. In two-dimensions (2D) the interactions are smaller, but can still be analyzed in terms of valence bonds.Comment: 8 pages, 6 figures, accepted by Europhys. Lett. The latest pdf file is available at http://www.physik.uni-kl.de/eggert/papers/interact2d.pd

    Line shapes of dynamical correlation functions in Heisenberg chains

    Full text link
    We calculate line shapes of correlation functions by use of complete diagonalization data of finite chains and analytical implications from conformal field theory, density of states, and Bethe ansatz. The numerical data have different finite size accuracy in case of the imaginary and real parts in the frequency and time representations of spin-correlation functions, respectively. The low temperature, conformally invariant regime crosses over at T0.7JT^*\approx 0.7J to a diffusive regime that in turn connects continuously to the high temperature, interacting fermion regime. The first moment sum rule is determined.Comment: 13 pages REVTEX, 18 figure

    Self-adjoint symmetry operators connected with the magnetic Heisenberg ring

    Full text link
    We consider symmetry operators a from the group ring C[S_N] which act on the Hilbert space H of the 1D spin-1/2 Heisenberg magnetic ring with N sites. We investigate such symmetry operators a which are self-adjoint (in a sence defined in the paper) and which yield consequently observables of the Heisenberg model. We prove the following results: (i) One can construct a self-adjoint idempotent symmetry operator from every irreducible character of every subgroup of S_N. This leads to a big manifold of observables. In particular every commutation symmetry yields such an idempotent. (ii) The set of all generating idempotents of a minimal right ideal R of C[S_N] contains one and only one idempotent which ist self-adjoint. (iii) Every self-adjoint idempotent e can be decomposed into primitive idempotents e = f_1 + ... + f_k which are also self-adjoint and pairwise orthogonal. We give a computer algorithm for the calculation of such decompositions. Furthermore we present 3 additional algorithms which are helpful for the calculation of self-adjoint operators by means of discrete Fourier transforms of S_N. In our investigations we use computer calculations by means of our Mathematica packages PERMS and HRing.Comment: 13 page

    Thermodynamics of ideal quantum gas with fractional statistics in D dimensions

    Get PDF
    We present exact and explicit results for the thermodynamic properties (isochores, isotherms, isobars, response functions, velocity of sound) of a quantum gas in dimensions D>=1 and with fractional exclusion statistics 0<=g<=1 connecting bosons (g=0) and fermions (g=1). In D=1 the results are equivalent to those of the Calogero-Sutherland model. Emphasis is given to the crossover between boson-like and fermion-like features, caused by aspects of the statistical interaction that mimic long-range attraction and short-range repulsion. The full isochoric heat capacity and the leading low-T term of the isobaric expansivity in D=2 are independent of g. The onset of Bose-Einstein condensation along the isobar occurs at a nonzero transition temperature in all dimensions. The T-dependence of the velocity of sound is in simple relation to isochores and isobars. The effects of soft container walls are accounted for rigorously for the case of a pure power-law potential.Comment: 15 pages, 31 figure
    corecore