53 research outputs found
Transparent yttrium hydride thin films prepared by reactive sputtering
Metal hydrides have earlier been suggested for utilization in solar cells.
With this as a motivation we have prepared thin films of yttrium hydride by
reactive magnetron sputter deposition. The resulting films are metallic for low
partial pressure of hydrogen during the deposition, and black or
yellow-transparent for higher partial pressure of hydrogen. Both metallic and
semiconducting transparent YHx films have been prepared directly in-situ
without the need of capping layers and post-deposition hydrogenation. Optically
the films are similar to what is found for YHx films prepared by other
techniques, but the crystal structure of the transparent films differ from the
well-known YH3 phase, as they have an fcc lattice instead of hcp
Photochromic mechanism in oxygen-containing yttrium hydride thin films: An optical perspective
Oxygen-containing yttrium hydride thin films exhibit photochromic behavior: Transparent thin films reversibly switch from a transparent state to a photodarkened state after being illuminated with UV or blue light. From optical spectrophotometry and ellipsometry measurements of the transparent state and photodarkened state, it is concluded that the photochromic effect can be explained by the gradual growth, under illumination, of metallic domains within the initial wide-band-gap semiconducting lattice. This conclusion is supported by Raman measurements
Experimental studies of thorium ions implantation from pulse laser plasma into thin silicon oxide layers
We report the results of experimental studies related to implantation of
thorium ions into thin silicon dioxide by pulsed plasma fluxes expansion.
Thorium ions were generated by laser ablation from a metal target, and the
ionic component of the laser plasma was accelerated in an electric field
created by the potential difference (5, 10 and 15 kV) between the ablated
target and SiO2/Si(001) sample. Laser ablation system installed inside the
vacuum chamber of the electron spectrometer was equipped with YAG:Nd3+ laser
having the pulse energy of 100 mJ and time duration of 15 ns in the Q-switched
regime. Depth profile of thorium atoms implanted into the 10 nm thick
subsurface areas together with their chemical state as well as the band gap of
the modified silicon oxide at different conditions of implantation processes
were studied by means of X-ray photoelectron spectroscopy (XPS) and Reflected
Electron Energy Loss Spectroscopy (REELS) methods. Analysis of chemical
composition showed that the modified silicon oxide film contains complex
thorium silicates. Depending on local concentration of thorium atoms, the
experimentally established band gaps were located in the range of 6.0 - 9.0 eV.
Theoretical studies of optical properties of the SiO2 and ThO2 crystalline
systems have been performed by ab initio calculations within hybrid functional.
Optical properties of the SiO2/ThO2 composite were interpreted on the basis of
Bruggeman effective medium approximation. A quantitative assessment of the
yield of isomeric nuclei in "hot" laser plasma at the early stages of expansion
has been performed. The estimates made with experimental results demonstrated
that the laser implantation of thorium ions into the SiO2 matrix can be useful
for further research of low-lying isomeric transitions in 229Th isotope with
energy of 7.8(0.5) eV
Oxygen vacancy related distortions in rutile TiO_2 nanoparticles: a combined experimental and theoretical study
The effects of doubly ionized oxygen vacancies [(V_O)ˆ(2+)]on the electronic structure and charge distribution in rutile TiO_2 are studied by combining first-principles calculations based on density functional theory and experimental results from x-ray photoelectron and x-ray absorption measurements carried out in synchrotron facilities on rutile TiO_2 nanoparticles. The generalized gradient approximation of the Perdew-Burke-Ernzerhof functional has demonstrated its suitability for the analysis of the [(V_O)ˆ(2+)]defects in rutile TiO_2. It has been found that the presence of empty electronic states at the conduction band shifted ̴1 eV from t_(2g) and e_(g) states can be associated with local distortions induced by [(V_O)ˆ(2+)]defects, in good agreement with Gauss-Lorentzian band deconvolution of experimental O K-edge spectra. The asymmetry of t(2g) and e(g) bands at the O-K edge has been associated with [(V_O)ˆ(2+)], which can enrich the understanding of studies where the presence of these defects plays a key role, as in the case of doped TiO_2
MgyNi1-y(Hx) thin films deposited by magnetron co-sputtering
In this work we have synthesised thin films of MgyNi1-y(Hx) metal and metal
hydride with y between 0 and 1. The films are deposited by magnetron
co-sputtering of metallic targets of Mg and Ni. Metallic MgyNi1-y films were
deposited with pure Ar plasma while MgyNi1-yHx hydride films were deposited
reactively with 30% H2 in the Ar plasma. The depositions were done with a fixed
substrate carrier, producing films with a spatial gradient in the Mg and Ni
composition. The combinatorial method of co-sputtering gives an insight into
the phase diagram of MgyNi1-y and MgyNi1-yHx, and allows us to investigate
structural, optical and electrical properties of the resulting alloys. Our
results show that reactive sputtering gives direct deposition of metal hydride
films, with high purity in the case of Mg~2NiH~4. We have observed limited
oxidation after several months of exposure to ambient conditions. MgyNi1-y and
MgyNi1-yHx films might be applied for optical control in smart windows, optical
sensors and as a semiconducting material for photovoltaic solar cells
Synergetic improvement of stability and conductivity of hybrid composites formed by PEDOT:PSS and SnO nanoparticles
In this work, layered hybrid composites formed by tin oxide (SnO) nanoparticles synthesized by hydrolysis and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) have been analyzed. Prior to the composite study, both SnO and PEDOT:PSS counterparts were characterized by diverse techniques, such as X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), photoluminescence (PL), atomic force microscopy (AFM), optical absorption and Hall effect measurements. Special attention was given to the study of the stability of the polymer under laser illumination, as well as the analysis of the SnO to SnO_2 oxidation assisted by laser irradiation, for which different laser sources and neutral filters were employed. Synergetic effects were observed in the hybrid composite, as the addition of SnO nanoparticles improves the stability and electrical conductivity of the polymer, while the polymeric matrix in which the nanoparticles are embedded hinders formation of SnO_2. Finally, the Si passivation behavior of the hybrid composites was studied
Electronic structure and optical properties of ZnX (X=O, S, Se, Te)
Electronic band structure and optical properties of zinc monochalcogenides
with zinc-blende- and wurtzite-type structures were studied using the ab initio
density functional method within the LDA, GGA, and LDA+U approaches.
Calculations of the optical spectra have been performed for the energy range
0-20 eV, with and without including spin-orbit coupling. Reflectivity,
absorption and extinction coefficients, and refractive index have been computed
from the imaginary part of the dielectric function using the Kramers--Kronig
transformations. A rigid shift of the calculated optical spectra is found to
provide a good first approximation to reproduce experimental observations for
almost all the zinc monochalcogenide phases considered. By inspection of the
calculated and experimentally determined band-gap values for the zinc
monochalcogenide series, the band gap of ZnO with zinc-blende structure has
been estimated.Comment: 17 pages, 10 figure
Coulomb correlation effects in zinc monochalcogenides
Electronic structure and band characteristics for zinc monochalcogenides with
zinc-blende- and wurtzite-type structures are studied by first-principles
density-functional-theory calculations with different approximations. It is
shown that the local-density approximation underestimates the band gap and
energy splitting between the states at the top of the valence band, misplaces
the energy levels of the Zn-3d states, and overestimates the
crystal-field-splitting energy. Regardless of the structure type considered,
the spin-orbit-coupling energy is found to be overestimated for ZnO and
underestimated for ZnS with wurtzite-type structure, and more or less correct
for ZnSe and ZnTe with zinc-blende-type structure. The order of the states at
the top of the valence band is found to be anomalous for ZnO in both
zinc-blende- and wurtzite-type structure, but is normal for the other zinc
monochalcogenides considered. It is shown that the Zn-3d electrons and their
interference with the O-2p electrons are responsible for the anomalous order.
The typical errors in the calculated band gaps and related parameters for ZnO
originate from strong Coulomb correlations, which are found to be highly
significant for this compound. The LDA+U approach is by and large found to
correct the strong correlation of the Zn-3d electrons, and thus to improve the
agreement with the experimentally established location of the Zn-3d levels
compared with that derived from pure LDA calculations
- …