96 research outputs found
The effect of tube diameter on vertical two-phase flow regimes in small tubes
Flow boiling flow patterns in four circular tubes with internal diameters of 1.10, 2.01, 2.88 and 4.26 mm were investigated in the present project. The experiments were conducted in vertical upward two-phase flow using R134a as the working fluid. The observed flow patterns include dispersed bubble, bubbly, confined bubble, slug, churn, annular and mist flow. The flow characteristics in the 2.88 and 4.26 mm tubes are similar to those typically described in normal size tubes. The smaller diameter tubes, 1.10 and 2.01 mm, exhibit strong "small tube characteristics" as described in earlier studies. The sketched flow maps show that the transition boundaries of slug-churn and churn-annular depend strongly on diameter. On the contrary, the dispersed bubble to churn and bubbly to slug boundaries are less affected. The transition boundaries are compared with existing models for normal size tubes showing poor agreement
Modelling pressure fluctuations during flow boiling in microchannels with inlet compressibility and resistance
Confined bubble growth during flow boiling at low pressures in microchannels generates pressure fluctuations that may cause transient flow reversals that disturb the flow distribution in heat sinks formed of parallel channels joined by plena. A simple model is developed for the effects of upstream compressibility and flow resistance at the channel inlet on the magnitude of the pressure transient during the growth of one bubble in a single channel. Preliminary results are presented
R134a flow boiling heat transfer in small diameter tubes
Copyright @ 2007 RT Edwards Inc.Boiling heat transfer in small diameter tubes has been experimentally investigated using R134a as the working fluid. The heat transfer periments were conducted with two stainless steel tubes of internal diameter 4.26 mm and 2.01 mm respectively. Other parameters were varied in the range: mass flux 100 – 500 kg/m2s; pressure 8 – 14 bar; quality up to 0.9; heat flux 13 - 150 kW/m2. The heat transfer coefficient was found to be independent of vapour quality when the quality was less than about 40% to 50% for the 4.26 mm tube and 20% to 30 % for the 2.01 mm tube. Above these quality values, the heat transfer coefficient decreases with vapour quality. Furthermore, at high heat flux values this decrease occurs for the entire quality range. The heat transfer rates were compared with existing correlations.
Flow boiling in a 1.1mm tube with R134a: Experimental results and comparison with model
A detailed comparison of the three-zone evaporation model, proposed by Thome et al. (2004), with experimental heat transfer results of two stainless steel tubes of internal diameter 4.26 mm and 2.01 mm using R134a fluid was presented by Shiferaw et al. (2006). In the current paper the comparison is extended to flow boiling in a 1.1 mm tube using R134a as the working fluid. Other parameters were varied in the range: mass flux 100-600 kg/m2.s; heat flux 16-150 kW/m2 and pressure 6-12 bar.
The experimental results demonstrate that the heat transfer coefficient increases with heat flux and system pressure, but does not change with vapour quality when the quality is less than about 50% for low heat and mass flux values. The effect of mass flux is observed to be insignificant. For vapour quality values greater than 50% and at high heat flux values, the heat transfer coefficient does not depend on heat flux and decreases with vapour quality. This could be caused by partial dryout. The three-zone evaporation model predicts the experimental results fairly well, especially at relatively low pressure. However, the partial dryout region is highly over-predicted by the model. The sensitivity of the performance of the model to the three optimized parameters (confined bubble frequency, initial film thickness and end film thickness) and some preliminary investigation relating the critical film thickness for dryout to measured tube roughness are also discussed
R134a flow patterns in small diameter tubes
R134a vapour-liquid two-phase flow patterns were studied in vertical small diameter tubes. The observed flow patterns include bubbly, dispersed bubble, slug, churn, annular and mist flow. Six integrated flow pattern maps, derived for two internal diameters (2.01 and 4.26 mm) and three different pressures (6.0, 10.0, 14.0 bar), are presented. Some transition boundaries, such as slug-churn and churn-annular, were found to be very sensitive to diameter and pressure. On the contrary, the boundaries of dispersed bubble-churn and bubbly-slug are less affected. The transition boundaries are compared with the existing models for normal size tubes showing significant differences
A comparison with the three-zone model for flow boiling heat transfer in small diameter tubes
Flow boiling heat transfer experimental results, obtained in two stainless steel tubes of internal diameter 4.26 mm and 2.01 mm using R134a as the working fluid, indicate that the local heat transfer coefficient increases with heat flux and is independent of vapour quality when this is less than about 40% to 50% for the 4.26 mm tube and 20% to 30% for the 2.01 mm tube, conventionally interpreted as nucleate boiling. Above these quality values, the separate graphs merge into a single line for heat transfer coefficient decreasing with increasing vapour quality. The data in the apparently-nucleate boiling condition are compared with a recent state-of-the-art three-zone evaporation model for the confined bubble flow regime without a nucleate boiling contribution. The model predicts the experimental data reasonably well but does not predict correctly the trends for changing pressure and diameter. Some suggestions are made for improving the model. The comparisons made in this paper support the statements by the developers of the model and others that the application of conventional macro flow boiling correlations to micro tube flow boiling heat transfer may not necessarily have a sound physical basis
Saturated flow boiling in small- to micro- diameter metallic tubes: Experimental results and modeling
Some results of a long-term study of flow boiling patterns, heat transfer rates and pressure drop of R134a at pressures of 6-14 bar in five vertical stainless steel tubes of internal diameter 4.26, 2.88, 2.01, 1.1 and 0.52 mm are presented in this paper. The flow regimes in the 4.26 mm to 1.1 mm tubes were identified as dispersed bubble, bubbly, slug, churn, annular and mist flows. As the diameter was reduced, progressively slimmer vapour slugs, a thinner liquid film around the vapour slug and a less chaotic vapour-liquid interface in churn flow were observed. Confined flow appeared first in the 2.01 mm tube. Dispersed bubble flow was not observed in the smallest tube (0.52 mm) for the range studied in runs in which wavy film flow occurred. The heat transfer coefficients in tubes ranging from 4.26 mm down to 1.1 mm increased with heat flux and system pressure, but did not change with vapour quality for low quality values. At higher quality, the heat transfer coefficients decreased with quality, indicating local dryout. The heat transfer characteristics of the 0.52 mm tube were different from those in the larger tubes. The data fell into two groups that exhibited different influences of heat flux below and above a heat flux threshold. The pressure drop and heat transfer results were compared with existing correlations but with some limited success. Recent progress on mechanistic models for heat transfer along with comparisons and recommendations are included in the paper
Vertical upward flow patterns in small diameter tubes
Two-phase flow patterns were studied in vertical small diameter tubes using R134a as the working fluid. The observed flow patterns include bubbly, dispersed bubble, confined bubble, slug, churn, annular and mist flow. Twelve flow pattern maps, derived from four internal diameters (1.10, 2.01, 2.88 and 4.26 mm) and three different pressures (6, 10, 14 bar), are presented. The flow patterns exhibit strong “small tube characteristics” described in earlier studies when the tube diameter is 2 mm or less. Slug-churn and churn-annular boundaries depend on diameter and pressure. Dispersed bubble-churn and bubbly-slug are less affected. The transition boundaries are compared with existing models for normal size tubes showing poor agreement. Various coordinate systems were considered for the flow maps. The results show that the Lockhard-Martinelli Parameter and mass flow flux can account for the effect of fluid pressure on flow patterns
Two-phase heat transfer in small passages and microfinned surfaces - Fundamentals and applications
Micro channels and internally finned tubes are increasingly being utilized in the evaporators and condensers of refrigeration systems. The adoption of such geometries in the development of micro-cooling systems is first discussed in this paper. Recent work on flow boiling heat transfer and condensation in small to micro passages as well as on microfinned surfaces is then presented. The complex effect of diameter size on flow boiling patterns and heat transfer and correlations currently available in literature are summarized. Condensation in microfinned tubes and microchannels is then discussed
Analysis of energy use in crisp frying processes
Copyright @ 2010 Politecnico di Bari - BB PressWith increasing energy costs in industrial food frying processes it is essential to identify inefficiencies and minimise them. A way of achieving this is through the application of energy analysis and modelling techniques to characterise the process and investigate the interactions between the various operating and control parameters. The
overall objective is to reduce energy consumption without compromising product throughput and quality. This paper provides a review of published work on heat and mass transfer in frying processes. Based on this, a simplified analysis of the key processes has been carried out using an energy balance model. The outputs of this model have been validated using data from an industrial crisp frying facility. The knowledge gained from this validation will be used to better understand and appreciate the energy flows in industrial frying processes and should lead to identification of losses and opportunities for energy recovery.The authors would like to acknowledge the financial support from the UK Engineering and Physical Sciences Research Council (EPSRC), Grant NO. EP/G059799/1, for this project as well as the input from the industrial collaborators and academic collaborators from the Universities of Newcastle and Northumbria
- …