81 research outputs found

    Stochastic Drift in Mitochondrial DNA Point Mutations: A Novel Perspective Ex Silico

    Get PDF
    The mitochondrial free radical theory of aging (mFRTA) implicates Reactive Oxygen Species (ROS)-induced mutations of mitochondrial DNA (mtDNA) as a major cause of aging. However, fifty years after its inception, several of its premises are intensely debated. Much of this uncertainty is due to the large range of values in the reported experimental data, for example on oxidative damage and mutational burden in mtDNA. This is in part due to limitations with available measurement technologies. Here we show that sample preparations in some assays necessitating high dilution of DNA (single molecule level) may introduce significant statistical variability. Adding to this complexity is the intrinsically stochastic nature of cellular processes, which manifests in cells from the same tissue harboring varying mutation load. In conjunction, these random elements make the determination of the underlying mutation dynamics extremely challenging. Our in silico stochastic study reveals the effect of coupling the experimental variability and the intrinsic stochasticity of aging process in some of the reported experimental data. We also show that the stochastic nature of a de novo point mutation generated during embryonic development is a major contributor of different mutation burdens in the individuals of mouse population. Analysis of simulation results leads to several new insights on the relevance of mutation stochasticity in the context of dividing tissues and the plausibility of ROS ”vicious cycle” hypothesis

    Versican but not decorin accumulation is related to malignancy in mammographically detected high density and malignant-appearing microcalcifications in non-palpable breast carcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mammographic density (MD) and malignant-appearing microcalcifications (MAMCs) represent the earliest mammographic findings of non-palpable breast carcinomas. Matrix proteoglycans versican and decorin are frequently over-expressed in various malignancies and are differently involved in the progression of cancer. In the present study, we have evaluated the expression of versican and decorin in non-palpable breast carcinomas and their association with high risk mammographic findings and tumor characteristics.</p> <p>Methods</p> <p>Three hundred and ten patients with non-palpable suspicious breast lesions, detected during screening mammography, were studied. Histological examination was carried out and the expression of decorin, versican, estrogen receptor α (ERα), progesterone receptor (PR) and c-erbB2 (HER-2/neu) was assessed by immunohistochemistry.</p> <p>Results</p> <p>Histological examination showed 83 out of 310 (26.8%) carcinomas of various subtypes. Immunohistochemistry was carried out in 62/83 carcinomas. Decorin was accumulated in breast tissues with MD and MAMCs independently of the presence of malignancy. In contrast, versican was significantly increased only in carcinomas with MAMCs (median ± SE: 42.0 ± 9.1) and MD (22.5 ± 10.1) as compared to normal breast tissue with MAMCs (14.0 ± 5.8), MD (11.0 ± 4.4) and normal breast tissue without mammographic findings (10.0 ± 2.0). Elevated levels of versican were correlated with higher tumor grade and invasiveness in carcinomas with MD and MAMCs, whereas increased amounts of decorin were associated with <it>in situ </it>carcinomas in MAMCs. Stromal deposition of both proteoglycans was related to higher expression of ERα and PR in tumor cells only in MAMCs.</p> <p>Conclusions</p> <p>The specific accumulation of versican in breast tissue with high MD and MAMCs only in the presence of malignant transformation and its association with the aggressiveness of the tumor suggests its possible use as molecular marker in non-palpable breast carcinomas.</p

    Pharmacogenetics in model-based optimization of bevacizumab therapy for metastatic colorectal cancer

    No full text
    Vascular endothelial growth factor A (VEGF-A) and intercellular adhesion molecule 1 (ICAM-1) are significant regulators of angiogenesis, an important biological process involved in carcinogenesis. Bevacizumab, an anti-VEGF monoclonal antibody (MAB), is approved for the treatment of metastatic Colorectal cancer (mCRC), however clinical outcomes are highly variable. In the present study, we developed a pharmacokinetic (PK), a simplified quasi-steady state (QSS) and a pharmacokinetic/pharmacodynamic (PK/PD) model to identify potential sources of variability. A total of 46 mCRC patients, who received bevacizumab in combination with chemotherapy were studied. VEGF-A (rs2010963, rs1570360, rs699947) and ICAM-1 (rs5498, rs1799969) genes’ polymorphisms, age, gender, weight, and dosing scheme were investigated as possible co-variates of the model’s parameters. Polymorphisms, trough, and peak levels of bevacizumab, and free VEGF-A were determined in whole blood and serum. Data were analyzed using nonlinear mixed-effects modeling. The two-compartment PK model showed that clearance (CL) was significantly lower in patients with mutant ICAM-1 rs1799969 (p &lt; 0.0001), inter-compartmental clearance (Q) was significantly higher with mutant VEGF-A rs1570360 (p &lt; 0.0001), and lower in patients with mutant VEGF-A rs699947 (p &lt; 0.0001). The binding QSS model also showed that mutant ICAM-1 rs1799969 was associated with a lower CL (p = 0.0177). Mutant VEGF-A rs699947 was associated with a lower free VEGF-A levels, prior to the next dose (p = 0.000445). The above results were confirmed by the PK/PD model. Findings of the present study indicated that variants of the genes regulating angiogenesis might affect PK and PD characteristics of bevacizumab, possibly influencing the clinical outcomes. © 2020 by the authors. Licensee MDPI, Basel, Switzerland
    corecore